Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
vignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique. Un signal périodique de fréquence et de forme quelconque peut être obtenu en ajoutant à une sinusoïde de fréquence (fondamentale), des sinusoïdes dont les fréquences sont des multiples entiers de . Ces signaux ont des amplitudes et des positions de phase appropriées. De même, on peut décomposer toute onde récurrente en une somme de sinusoïdes (fondamentale et harmoniques). L'étude d'une fonction périodique par les séries de Fourier comprend deux volets : l'analyse, qui consiste en la détermination de la suite de ses coefficients de Fourier ; la synthèse, qui permet de retrouver, en un certain sens, la fonction à l'aide de la suite de ses coefficients. Au-delà du problème de la décomposition, la théorie des séries de Fourier établit une correspondance entre la fonction périodique et les coefficients de Fourier. De ce fait, l'analyse de Fourier peut être considérée comme une nouvelle façon de décrire les fonctions périodiques. Des opérations telles que la dérivation s'écrivent simplement en partant des coefficients de Fourier. La construction d'une fonction périodique solution d'une équation fonctionnelle peut se ramener à la construction des coefficients de Fourier correspondants. Les séries de Fourier ont été introduites par Joseph Fourier en 1822, mais il a fallu un siècle pour que les analystes dégagent les outils d'étude adaptés : une théorie de l'intégrale pleinement satisfaisante et les premiers concepts de l'analyse fonctionnelle.
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Wei Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Vladimir Petrov, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Muhammad Waqas, Hui Wang, Seungkyu Ha, Long Wang, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Xin Gao, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer
Pascal Frossard, Chenglin Li, Li Wei, Qin Yang, Yuelei Li, Hao Wang
Laurent Villard, Stephan Brunner, Alberto Bottino, Moahan Murugappan