Résumé
vignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique. Un signal périodique de fréquence et de forme quelconque peut être obtenu en ajoutant à une sinusoïde de fréquence (fondamentale), des sinusoïdes dont les fréquences sont des multiples entiers de . Ces signaux ont des amplitudes et des positions de phase appropriées. De même, on peut décomposer toute onde récurrente en une somme de sinusoïdes (fondamentale et harmoniques). L'étude d'une fonction périodique par les séries de Fourier comprend deux volets : l'analyse, qui consiste en la détermination de la suite de ses coefficients de Fourier ; la synthèse, qui permet de retrouver, en un certain sens, la fonction à l'aide de la suite de ses coefficients. Au-delà du problème de la décomposition, la théorie des séries de Fourier établit une correspondance entre la fonction périodique et les coefficients de Fourier. De ce fait, l'analyse de Fourier peut être considérée comme une nouvelle façon de décrire les fonctions périodiques. Des opérations telles que la dérivation s'écrivent simplement en partant des coefficients de Fourier. La construction d'une fonction périodique solution d'une équation fonctionnelle peut se ramener à la construction des coefficients de Fourier correspondants. Les séries de Fourier ont été introduites par Joseph Fourier en 1822, mais il a fallu un siècle pour que les analystes dégagent les outils d'étude adaptés : une théorie de l'intégrale pleinement satisfaisante et les premiers concepts de l'analyse fonctionnelle.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.