Explorer les distributions d'échantillonnage, les propriétés des estimateurs et les mesures statistiques pour les applications de la science des données.
Explore l'échantillonnage de rejet pour générer des valeurs d'échantillon à partir d'une distribution cible, ainsi que l'inférence bayésienne à l'aide de MCMC.
Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.