Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
ConstanteCet article concerne les grandeurs constantes. Pour les expressions dont la valeur ne dépend pas d'une variable, voir « Fonction constante ». En sciences, une constante est une grandeur dont la valeur est fixée par convention ou par calcul, indépendamment du problème dans lequel elle est rencontrée. Cette notion s'oppose ainsi à celle de variable, dont la valeur peut changer au cours d'un même problème. Une constante est généralement notée par une lettre, majuscule ou minuscule, qui tend à être adoptée internationalement.
Polynôme unitaireEn algèbre commutative, un polynôme unitaire, ou polynôme monique, est un polynôme non nul dont le coefficient dominant (le coefficient du terme de plus haut degré) est égal à 1. Un polynôme P est donc unitaire si et seulement s'il s'écrit sous la forme Sur les polynômes unitaires à coefficients dans un anneau commutatif A donné, la relation divise est une relation d'ordre partiel. Si A est un corps, alors tout polynôme non nul est associé à un polynôme unitaire et un seul.
Augmented matrixIn linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices, usually for the purpose of performing the same elementary row operations on each of the given matrices. Given the matrices A and B, where the augmented matrix (A|B) is written as This is useful when solving systems of linear equations. For a given number of unknowns, the number of solutions to a system of linear equations depends only on the rank of the matrix representing the system and the rank of the corresponding augmented matrix.
Degré d'un polynômeEn algèbre commutative, le degré d'un polynôme (en une ou plusieurs indéterminées) est le degré le plus élevé de ses termes lorsque le polynôme est exprimé sous sa forme canonique constituée d'une somme de monômes. Le degré d'un terme est la somme des exposants des indéterminées qui y apparaissent. Le terme ordre a été utilisé comme synonyme de degré, mais de nos jours, il fait référence à des concepts différents, bien que connexes. Par exemple, le polynôme 7XY + 4X – 9 a trois monômes.
Polynôme homogèneEn mathématiques, un polynôme homogène, ou forme algébrique, est un polynôme en plusieurs indéterminées dont tous les monômes non nuls sont de même degré total. Par exemple le polynôme x + 2xy + 9xy est homogène de degré 5 car la somme des exposants est 5 pour chacun des monômes ; les polynômes homogènes de degré 2 sont les formes quadratiques. Les polynômes homogènes sont omniprésents en mathématiques et en physique théorique. Soit K un corps commutatif. Un polynôme homogène de degré d en n variables est un polynôme dans K[X, .
François VièteFrançois Viète, ou François Viette, en latin Franciscus Vieta, est un mathématicien français, né à Fontenay-le-Comte (Vendée) en 1540 et mort à Paris le . De famille bourgeoise et de formation juridique, il a été l'avocat de grandes familles protestantes, dont les Parthenay-l'Archevêque et les Rohan, avant de devenir conseiller, puis maître des requêtes au parlement de Rennes, sous , puis maître des requêtes ordinaires de l'hôtel du roi sous .
IndéterminéeExemple de polynôme à coefficients entiers, d'indéterminée . En mathématiques, une indéterminée est le concept permettant de formaliser des objets comme les polynômes formels, les fractions rationnelles ou encore les séries formelles. On la désigne en général par la lettre majuscule X. L'indéterminée permet de définir des structures algébriques parfois plus simples que leurs équivalents en analyse. Par exemple, sur tout anneau intègre, le corps des fractions rationnelles, défini à l'aide de l'indéterminée X, diffère de la structure équivalente des fonctions rationnelles de la variable x.
Matrice échelonnéeEn algèbre linéaire, une matrice est dite échelonnée en lignes si le nombre de zéros précédant la première valeur non nulle d'une ligne augmente strictement ligne par ligne jusqu'à ce qu'il ne reste éventuellement plus que des zéros. Voici un exemple de matrice échelonnée (les désignent des coefficients quelconques, les des pivots, coefficients non nuls) : Une matrice échelonnée est dite matrice échelonnée réduite, ou matrice canonique en lignes, si les pivots valent 1 et si les autres coefficients dans les colonnes des pivots sont nuls.
Standard basisIn mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as or ) is the set of vectors, each of whose components are all zero, except one that equals 1. For example, in the case of the Euclidean plane formed by the pairs (x, y) of real numbers, the standard basis is formed by the vectors Similarly, the standard basis for the three-dimensional space is formed by vectors Here the vector ex points in the x direction, the vector ey points in the y direction, and the vector ez points in the z direction.