En mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles (parfois appelée équation différentielle partielle et abrégée en EDP) est une équation différentielle dont les solutions sont les fonctions inconnues dépendant de plusieurs variables vérifiant certaines conditions concernant leurs dérivées partielles. Une EDP a souvent de très nombreuses solutions, les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire à une seule variable ; les problèmes comportent souvent des conditions aux limites qui restreignent l'ensemble des solutions. Alors que les ensembles de solutions d'une équation différentielle ordinaire sont paramétrées par un ou plusieurs paramètres correspondant aux conditions supplémentaires, dans le cas des EDP, les conditions aux limites se présentent plutôt sous la forme de fonction ; intuitivement cela signifie que l'ensemble des solutions est beaucoup plus grand, ce qui est vrai dans la quasi-totalité des problèmes. Les EDP sont omniprésentes dans les sciences puisqu'elles apparaissent aussi bien en dynamique des structures ou en mécanique des fluides que dans les théories de la gravitation, de l'électromagnétisme (équations de Maxwell), ou des mathématiques financières (équation de Black-Scholes). Elles sont primordiales dans des domaines tels que la simulation aéronautique, la s, ou la prévision météorologique. Enfin, les équations les plus importantes de la relativité générale et de la mécanique quantique sont également des EDP. L'un des sept problèmes du prix du millénaire consiste à montrer l'existence et la continuité par rapport aux données initiales d'un système d'EDP appelé équations de Navier-Stokes. Une équation différentielle partielle très simple est : où u est une fonction inconnue de x et y. Cette équation implique que les valeurs u(x,y) sont indépendantes de x. Les solutions de cette équation sont : où f est une fonction de y. L'équation différentielle ordinaire a pour solution : avec c une valeur constante (indépendante de x).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
MATH-451: Numerical approximation of PDEs
The course is about the derivation, theoretical analysis and implementation of the finite element method for the numerical approximation of partial differential equations in one and two space dimens
MATH-202(c): Analysis III
The course studies the fundamental concepts of vector analysis and Fourier-Laplace analysis with a view to their use in solving multidisciplinary problems in scientific engineering.
MATH-305: Introduction to partial differential equations
This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.
Afficher plus
Publications associées (32)

Shape Holomorphy of Boundary Integral Operators on Multiple Open Arcs

Fernando José Henriquez Barraza

We establish shape holomorphy results for general weakly- and hyper-singular boundary integral operators arising from second-order partial differential equations in unbounded two-dimensional domains with multiple finite-length open arcs. After recasting th ...
New York2024

The time-domain Cartesian multipole expansion of electromagnetic fields

Marcos Rubinstein, Farhad Rachidi-Haeri, Elias Per Joachim Le Boudec, Chaouki Kasmi, Nicolas Mora Parra, Emanuela Radici

Time-domain solutions of Maxwell’s equations in homogeneous and isotropic media are paramount to studying transient or broadband phenomena. However, analytical solutions are generally unavailable for practical applications, while numerical solutions are co ...
2024
Afficher plus
Concepts associés (29)
Équation différentielle
En mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Équation de Laplace
En analyse vectorielle, l'équation de Laplace est une équation aux dérivées partielles elliptique du second ordre, dont le nom est un hommage au physicien mathématicien Pierre-Simon de Laplace. Introduite pour les besoins de la mécanique newtonienne, l'équation de Laplace apparaît dans de nombreuses autres branches de la physique théorique : astronomie, électrostatique, mécanique des fluides, propagation de la chaleur, diffusion, mouvement brownien, mécanique quantique.
Siméon Denis Poisson
Siméon Denis Poisson ( à Pithiviers - à Sceaux) est un mathématicien, géomètre et physicien français. Sa contribution la plus essentielle concerne l’électricité et le magnétisme qu’il contribua à fonder mais il eut également une influence en astronomie, notamment sur l’attraction des planètes. vignette|Maison natale à Pithiviers. Son père servait comme simple soldat lors des guerres du Hanovre mais, dégoûté par le mauvais traitement qu’il reçut des officiers nobles, il déserta.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.