Paradoxe soriteLe paradoxe sorite, aussi connu comme le paradoxe du tas, est un paradoxe dû à une terminologie vague (par exemple, un tas de sable). Il décrit un raisonnement qui conclut à l'impossibilité de constituer un tas (par ex. de sable) en accumulant un grain après l'autre. Ce paradoxe met en jeu un raisonnement par récurrence tout en exploitant dans ses prédicats, le flou sémantique qui entoure les mots du langage courant. Ce paradoxe fut formulé au par Eubulide, qui fut dirigeant de l'École mégarique.
LogiqueLa logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Faux dilemmeLe faux dilemme, appelé aussi exclusion du tiers, fausse dichotomie ou énumération incomplète, est un raisonnement fallacieux qui consiste à présenter deux solutions à un problème donné comme si elles étaient les deux seules possibles, alors qu'en réalité, il en existe d'autres. En rhétorique, cette dichotomisation vise à réduire une situation complexe à une alternative entre deux options, pouvant conduire au manichéisme (pensée en noir et blanc). « Soit le créationnisme est vrai, soit le darwinisme est vrai.
PhilosophieLa philosophie, du grec ancien (composé de , « aimer », et de , « sagesse, savoir »), signifiant littéralement « amour du savoir » et communément « amour de la sagesse », est une démarche qui vise à une compréhension du monde et de la vie par une réflexion rationnelle et critique. Cette réflexion n’est pas pour autant le propre d’un homme en particulier mais de tout homme dans sa dimension proprement humaine même si certains penseurs en ont fait le cœur de leur activité.
Principe de bivalenceLe principe de bivalence est un principe de logique selon lequel toute proposition p ne peut avoir qu'une seule des deux valeurs de vérité. Elle est soit vraie, soit fausse. Une logique respectant le principe de bivalence est dite logique bivalente. La logique classique est bivalente. Le principe de bivalence énonce que quelque chose est soit vrai, soit faux. Quelle que soit la proposition p, p est soit vraie, soit fausse. Le principe de bivalence rend les deux valeurs de vérité que sont le vrai et le faux conjointement exhaustifs.
VaguenessIn linguistics and philosophy, a vague predicate is one which gives rise to borderline cases. For example, the English adjective "tall" is vague since it is not clearly true or false for someone of middling height. By contrast, the word "prime" is not vague since every number is definitively either prime or not. Vagueness is commonly diagnosed by a predicate's ability to give rise to the Sorites paradox. Vagueness is separate from ambiguity, in which an expression has multiple denotations.
Logique polyvalenteLes logiques polyvalentes (ou multivalentes, ou multivaluées) sont des alternatives à la logique classique aristotélicienne, bivalente, dans laquelle toute proposition doit être soit vraie soit fausse. Elles sont apparues à partir des années 1920, surtout à la suite des travaux du logicien polonais Jan Łukasiewicz. Elles sont principalement étudiées au niveau du seul calcul propositionnel et peu au niveau du calcul des prédicats.
Logique floueLa logique floue (fuzzy logic, en anglais) est une logique polyvalente où les valeurs de vérité des variables — au lieu d'être vrai ou faux — sont des réels entre 0 et 1. En ce sens, elle étend la logique booléenne classique avec des . Elle consiste à tenir compte de divers facteurs numériques pour qu'on souhaite acceptable.
Valeur de véritéUne valeur de vérité est une valeur attribuée à chaque proposition logique. Pour donner une valeur de vérité à une proposition, on attribue des valeurs de vérité aux variables qu'elle contient. La valeur d'une proposition formés de deux propositions P et Q et d'un connecteur est calculée à partir des valeurs de vérité attribuées à P et à Q. Ainsi la valeur de vérité attribuée à « P et Q » sera « p.q » où « . » est la multiplication. En conséquence, P et Q est vrai si et seulement si P et Q sont chacun vrais.
Véritéthumb|Walter Seymour Allward, Veritas, 1920 thumb|Nec mergitur ou La Vérité sortant du puits, toile de Édouard Debat-Ponsan, 1898. La vérité (du latin veritas, « vérité », dérivé de verus, « vrai ») est la correspondance entre une proposition et la réalité à laquelle cette proposition réfère. Cependant cette définition correspondantiste de la vérité n'est pas la seule, il existe de nombreuses définitions du mot et des controverses classiques autour des diverses théories de la vérité.