Résumé
Muon g − 2 (pronounced "gee minus two") is a particle physics experiment at Fermilab to measure the anomalous magnetic dipole moment of a muon to a precision of 0.14 ppm, which is a sensitive test of the Standard Model. It might also provide evidence of the existence of new particles. The muon, like its lighter sibling the electron, acts like a tiny magnet. The parameter known as the "g factor" indicates how strong the magnet is and the rate of its gyration in an externally applied magnetic field. It is this rate of gyration that is indirectly measured in the Muon g − 2 experiment. The value of g is slightly larger than 2, hence the name of the experiment. This difference from 2 (the "anomalous" part) is caused by higher-order contributions from quantum field theory. In measuring g − 2 with high precision and comparing its value to the theoretical prediction, physicists will discover whether the experiment agrees with theory. Any deviation would point to as yet undiscovered subatomic particles that exist in nature. On July 9, 2023 the Fermilab collaboration concluded the experiment after six years of data collection. The initial results (based on data from the first year of the experiment's operation) were released on April 7, 2021. The results from the first three years of data-taking were announced in August 2023. The final results, based on the full six years of data-taking, are planned to be released in 2025. The first muon g − 2 experiments began at CERN in 1959 at the initiative of Leon Lederman. A group of six physicists formed the first experiment, using the Synchrocyclotron at CERN. The first results were published in 1961, with a 2% precision with respect to the theoretical value, and then the second ones with this time a 0.4% precision, hence validating the quantum electrodynamics theory. A second experiment started in 1966 with a new group, working this time with the Proton Synchrotron, also at CERN.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
PHYS-415: Particle physics I
Presentation of particle properties, their symmetries and interactions. Introduction to quantum electrodynamics and to the Feynman rules.
PHYS-416: Particle physics II
Presentation of the electroweak and strong interaction theories that constitute the Standard Model of particle physics. The course also discusses the new theories proposed to solve the problems of the
PHYS-432: Quantum field theory II
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
Afficher plus
Séances de cours associées (31)
Détection de particules : Particules stables et durée de vie
Explore la détection de particules stables dans les expériences de physique des particules, couvrant les particules observées et non observées, leur durée de vie et l'impact du coup de pouce de Lorentz.
Le passage des particules à travers la matière
Explore le passage des particules à travers la matière, en se concentrant sur les mécanismes de perte d'énergie et des sujets sélectionnés en physique nucléaire et des particules.
Essais de QED à basse énergie : Moment magnétique anormal
Explore les tests de QED à basse énergie, en se concentrant sur le moment magnétique anormal du muon et le moment dipôle électrique de l'électron.
Afficher plus
Publications associées (67)
Concepts associés (6)
Polarisation du vide
Dans la théorie quantique des champs et plus précisément en électrodynamique quantique, la polarisation du vide est un processus où un champ électromagnétique modifie la répartition « spatiale » de paires électron virtuel-positron, lesquelles paires à leur tour modifient la répartition des charges et des courants initialement produits par le champ électromagnétique. Ses effets ont été expérimentalement observés en 1997 par l'accélérateur de particules japonais TRISTAN du centre de recherche KEK.
Moment magnétique anomal
En physique des particules, le moment magnétique anomal désigne l'écart entre la valeur du facteur de Landé g d'un lepton et la valeur donnée par l'équation de Dirac. Cette anomalie est remarquablement bien expliquée par le modèle standard, en particulier par l'électrodynamique quantique, lorsque l'influence du vide quantique est prise en compte. L'anomalie est une quantité sans dimension, notée et donnée par : . Au moment cinétique orbital d'une particule de charge et de masse est associé un moment magnétique orbital : Le facteur est appelé rapport gyromagnétique.
Facteur de Landé
vignette|Représentation du moment magnétique anormal du muon En mécanique quantique, le facteur de Landé est une grandeur physique sans dimension qui permet de relier le moment magnétique au moment cinétique d'un état quantique. Il est essentiellement utilisé dans le cas d'une particule de spin non nul. Il est ainsi nommé en l'honneur d'Alfred Landé qui l'a introduit en 1921.
Afficher plus