Categories for the Working MathematicianCategories for the Working Mathematician est une monographie dédiée à la théorie des catégories, écrite par le mathématicien américain Saunders Mac Lane, l'un des cofondateurs de la discipline. L'ouvrage, largement considéré comme une référence de premier choix en la matière, est basé sur les cours donnés par l'auteur à l'université de Chicago, à l'université nationale australienne, au Bowdoin College et à l'université Tulane. Il est publié pour la première fois en 1971 et bénéficie d'une seconde édition, augmentée, en 1998.
Direct image functorIn mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf F defined on a topological space X and a continuous map f: X → Y, we can define a new sheaf f∗F on Y, called the direct image sheaf or the pushforward sheaf of F along f, such that the global sections of f∗F is given by the global sections of F.
Stone dualityIn mathematics, there is an ample supply of categorical dualities between certain of topological spaces and categories of partially ordered sets. Today, these dualities are usually collected under the label Stone duality, since they form a natural generalization of Stone's representation theorem for Boolean algebras. These concepts are named in honor of Marshall Stone. Stone-type dualities also provide the foundation for pointless topology and are exploited in theoretical computer science for the study of formal semantics.
BiproductIn and its applications to mathematics, a biproduct of a finite collection of , in a with zero objects, is both a and a coproduct. In a the notions of product and coproduct coincide for finite collections of objects. The biproduct is a generalization of finite direct sums of modules. Let C be a with zero morphisms. Given a finite (possibly empty) collection of objects A1, ...
Comma categoryIn mathematics, a comma category (a special case being a slice category) is a construction in . It provides another way of looking at morphisms: instead of simply relating objects of a to one another, morphisms become objects in their own right. This notion was introduced in 1963 by F. W. Lawvere (Lawvere, 1963 p. 36), although the technique did not become generally known until many years later. Several mathematical concepts can be treated as comma categories. Comma categories also guarantee the existence of some s and colimits.
Objet exponentielEn mathématiques, et plus particulièrement en théorie des catégories, un objet exponentiel est un équivalent catégorique à un espace fonctionnel en théorie des ensembles. Les catégories avec tous les produits finis et tous les objets exponentiels sont appelées catégories cartésiennes fermées. Un objet exponentiel peut aussi être appelé un objet puissance ou objet des morphismes. Soit C une catégorie avec produits et soient Y et Z des objets de C. L'objet exponentiel ZY peut être défini comme un morphisme universel du foncteur –×Y à Z.
Change of ringsIn algebra, a change of rings is an operation of changing a coefficient ring to another. Given a ring homomorphism , there are three ways to change the coefficient ring of a module; namely, for a right R-module M and a right S-module N, one can form the induced module, formed by extension of scalars, the coinduced module, formed by co-extension of scalars, and formed by restriction of scalars. They are related as adjoint functors: and This is related to Shapiro's lemma.
Tensor-hom adjunctionIn mathematics, the tensor-hom adjunction is that the tensor product and hom-functor form an adjoint pair: This is made more precise below. The order of terms in the phrase "tensor-hom adjunction" reflects their relationship: tensor is the left adjoint, while hom is the right adjoint. Say R and S are (possibly noncommutative) rings, and consider the right module categories (an analogous statement holds for left modules): Fix an -bimodule and define functors and as follows: Then is left adjoint to .
Suspension (mathématiques)En mathématiques, la suspension est une construction topologique définie par écrasement des extrémités d'un cylindre. Elle permet notamment de définir les sphères S par récurrence. Si l'espace topologique est pointé, sa suspension réduite est le quotient de la suspension par le cylindre sur le point de base, c'est un espace pointé avec un point base canonique. La suspension est un foncteur de la catégorie des espaces topologiques (pointés ou non) dans elle-même.
Espace des lacetsEn mathématiques, l'espace des lacets d'un espace topologique pointé est l'ensemble des applications continues d'un segment dans cet espace, tel que l'image des deux extrémités du segment coïncide avec le point de base. Muni de la topologie compacte-ouverte, il s'agit d'un invariant homotopique. La concaténation et le renversement des lacets en font un h-groupe. L'espace des lacets d'un CW-complexe a le type d'homotopie d'un CW-complexe. L’espace des lacets est la cofibre de l’inclusion de l’espace des chemins pointés dans l’espace des chemins.