Concept

Espace des lacets

Résumé
En mathématiques, l'espace des lacets d'un espace topologique pointé est l'ensemble des applications continues d'un segment dans cet espace, tel que l'image des deux extrémités du segment coïncide avec le point de base. Muni de la topologie compacte-ouverte, il s'agit d'un invariant homotopique. La concaténation et le renversement des lacets en font un h-groupe. L'espace des lacets d'un CW-complexe a le type d'homotopie d'un CW-complexe. L’espace des lacets est la cofibre de l’inclusion de l’espace des chemins pointés dans l’espace des chemins. En géométrie différentielle, l'espace des lacets d'une variété différentielle est restreint aux lacets infiniment différentiables, ce qui en fait une variété banachique. Le calcul de son homologie joue un rôle central dans l'étude de l'homologie de Floer des variétés cotangentes. Notes et références Articles connexes * *Groupe fondamental *Groupe d'homotopie *Lacet (mathématiques) * Catégorie:Topologie algébrique C
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement