Rayonnement ionisantvignette|Pouvoir de pénétration (exposition externe).Le rayonnement alpha (constitué de noyaux d'hélium) est arrêté par une simple feuille de papier.Le rayonnement bêta (constitué d'électrons ou de positons) est arrêté par une plaque d'aluminium.Le rayonnement gamma, constitué de photons très énergétiques, est atténué (et non arrêté) quand il pénètre de la matière dense, ce qui le rend particulièrement dangereux pour les organismes vivants.Il existe d'autres types de rayonnements ionisants.
Cristallographie aux rayons XLa cristallographie aux rayons X, radiocristallographie ou diffractométrie de rayons X (DRX, on utilise aussi souvent l'abréviation anglaise XRD pour X-ray diffraction) est une technique d'analyse fondée sur la diffraction des rayons X par la matière, particulièrement quand celle-ci est cristalline. La diffraction des rayons X est une diffusion élastique, c'est-à-dire sans perte d'énergie des photons (longueurs d'onde inchangées), qui donne lieu à des interférences d'autant plus marquées que la matière est ordonnée.
Effet Tcherenkovvignette|Radiation Tcherenkov dans le cœur de l'Advanced Test Reactor. L'effet Tcherenkov, parfois nommé effet Vavilov-Tcherenkov, est un phénomène similaire à une onde de choc, produisant un flash de lumière lorsqu'une particule chargée se déplace dans un milieu diélectrique avec une vitesse supérieure à la vitesse de la lumière dans ce milieu (la vitesse de la lumière dans le vide étant toujours supérieure à celle de la particule). Cet effet provoque par exemple la luminosité bleutée de l'eau entourant le cœur d'un réacteur nucléaire.
Raie spectraleUne raie spectrale est une ligne sombre ou lumineuse dans un spectre électromagnétique autrement uniforme et continu. Les raies spectrales sont le résultat de l'interaction entre un système quantique (généralement des atomes, mais parfois aussi des molécules ou des noyaux atomiques) et le rayonnement électromagnétique. vignette|upright=2|Raies de Fraunhofer sur un spectre continu avec leur notation alphabétique et les longueurs d'onde correspondantes.
Charged particleIn physics, a charged particle is a particle with an electric charge. It may be an ion, such as a molecule or atom with a surplus or deficit of electrons relative to protons. It can also be an electron or a proton, or another elementary particle, which are all believed to have the same charge (except antimatter). Another charged particle may be an atomic nucleus devoid of electrons, such as an alpha particle. A plasma is a collection of charged particles, atomic nuclei and separated electrons, but can also be a gas containing a significant proportion of charged particles.
OpacitéL'opacité d'une pellicule de peinture, d'encre, de vernis, de papier, est sa propriété d'intercepter la lumière, même lorsqu'elle est de faible épaisseur. L'opacité d'une peinture est sa capacité à occulter les colorations du substrat. Elle s'évalue simplement en enduisant d'une couche un support portant des formes à fort contraste. Ce qui en reste visible détermine l'appréciation de l'opacité. Les marchands de couleurs classent généralement leurs peintures en trois catégories : opaque, semi-transparent, transparent.
Polyméthacrylate de méthyleLe poly(méthacrylate de méthyle) (souvent abrégé en PMMA, de l'anglais poly(methyl methacrylate)) est un polymère thermoplastique transparent obtenu par polymérisation en chaîne dont le monomère est le méthacrylate de méthyle (MMA). Ce polymère est plus connu sous son premier nom commercial de Plexiglas, marque déposée utilisée dans le langage courant comme antonomase, même si le en mondial du PMMA est Altuglas International du groupe Arkema, sous le nom commercial Altuglas.
Formule de LarmorEn physique, la formule de Larmor a été établie par Joseph Larmor en 1897, dans le contexte de la théorie ondulatoire de la lumière. Une particule chargée, accélérée émet des radiations sous forme d'ondes électromagnétiques. La puissance totale émise est donnée par l'expression suivante : où est l'accélération, la charge de la particule et la célérité de la lumière dans le vide. Catégorie:Physique atomique Catégorie:Électromagnétisme Catégorie:Électrodynamique Catégorie:Équation aux dérivées partielles Cat
Spectrum (physical sciences)In the physical sciences, the term spectrum was introduced first into optics by Isaac Newton in the 17th century, referring to the range of colors observed when white light was dispersed through a prism. Soon the term referred to a plot of light intensity or power as a function of frequency or wavelength, also known as a spectral density plot. Later it expanded to apply to other waves, such as sound waves and sea waves that could also be measured as a function of frequency (e.g., noise spectrum, sea wave spectrum).
Laser à électrons libresUn laser à électrons libres (en free electron laser : FEL) est un type de laser qui fonctionne en utilisant des électrons qui ne sont pas liés à un atome, d’où l'adjectif « libres », pour créer des photons. La lumière produite est à la fois cohérente, intense et peut avoir une longueur d'onde située dans une large gamme, depuis les micro-ondes jusqu'aux rayons X durs, en passant par l'ultra-violet, le domaine visible et l'infrarouge. Les lasers à électrons libres ont été suggérés en 1971 par le physicien John M.