Résumé
right|thumb|Représentation graphique en escalier de la fonction « partie entière ». En mathématiques et en informatique, la partie entière par défaut, ou partie entière inférieure, en général abrégée en partie entière tout court, d'un nombre réel est l'unique entier relatif (positif, négatif ou nul) tel que On démontre son existence et son unicité par analyse-synthèse : est le plus grand entier relatif inférieur ou égal à (ce que l'on peut prendre comme définition équivalente de la partie entière de , voir ci-dessous), son existence étant garantie par la propriété d'Archimède. Dans le cas où est un rationnel , la partie entière de n'est autre que le quotient euclidien de par . La différence entre un nombre et sa partie entière est appelée sa partie fractionnaire ou partie décimale. La partie entière (par défaut) de est notée conventionnellement . La fonction partie entière est souvent notée ou . On utilise aussi la notation mais celle-ci a tendance à être remplacée par la notation car elle peut être confondue avec des parenthèses. De plus, il y a symétrie entre la partie entière inférieure (appelée en anglais floor, « plancher ») définie par l’encadrement : vignette|Représentation graphique de la fonction « troncature ». et la partie entière supérieure (appelée en anglais ceiling, « plafond ») définie par : La partie entière ne doit pas être confondue avec la troncature à l'unité, ou troncature entière, qui correspond à la suppression des décimales en notation usuelle et qui diffère de la partie entière pour les nombres négatifs. Par exemple, la partie entière de –1,5 vaut –2, tandis que sa troncature à l'unité vaut –1. vignette|300x300px|Représentation graphique en "dents de scie" de la fonction « partie fractionnaire ». La partie fractionnaire d'un nombre réel , notée , ou parfois , est la différence entre ce nombre et sa partie entière par défaut : La partie fractionnaire d'un nombre est un réel positif ou nul strictement inférieur à 1. On trouve également le terme de partie décimale du nombre, notamment pour les nombres décimaux.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Publications associées (34)
Personnes associées (1)
Concepts associés (17)
Arrondi (mathématiques)
Arrondir un nombre consiste à le remplacer par un autre nombre considéré comme plus simple ou plus pertinent. Ce procédé s'appelle arrondissage ou arrondissement et le nombre obtenu est un arrondi. Le résultat est moins précis, mais plus facile à employer. Il y a plusieurs façons d'arrondir. En général, on arrondit un nombre en en donnant une valeur approchée obtenue à partir de son développement décimal en réduisant le nombre de chiffres significatifs. L'arrondi peut se faire au plus proche, par excès ou par défaut.
Limite d'une suite
En mathématiques, de manière intuitive, la limite d'une suite est l'élément dont les termes de la suite se rapprochent quand les indices deviennent très grands. Cette définition intuitive n'est guère exploitable car il faudrait pouvoir définir le sens de « se rapprocher ». Cette notion sous-entend l'existence d'une distance (induite par la valeur absolue dans R, par le module dans C, par la norme dans un espace vectoriel normé) mais on verra que l'on peut même s'en passer pourvu qu'on ait une topologie.
Order theory
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.
Afficher plus