Concept

Icositrigon

In geometry, an icositrigon (or icosikaitrigon) or 23-gon is a 23-sided polygon. The icositrigon has the distinction of being the smallest regular polygon that is not neusis constructible. A regular icositrigon is represented by Schläfli symbol {23}. A regular icositrigon has internal angles of degrees, with an area of where is side length and is the inradius, or apothem. The regular icositrigon is not constructible with a compass and straightedge or angle trisection, on account of the number 23 being neither a Fermat nor Pierpont prime. In addition, the regular icositrigon is the smallest regular polygon that is not constructible even with neusis. Concerning the nonconstructability of the regular icositrigon, A. Baragar (2002) showed it is not possible to construct a regular 23-gon using only a compass and twice-notched straightedge by demonstrating that every point constructible with said method lies in a tower of fields over such that , being a sequence of nested fields in which the degree of the extension at each step is 2, 3, 5, or 6. Suppose in is constructible using a compass and twice-notched straightedge. Then belongs to a field that lies in a tower of fields for which the index at each step is 2, 3, 5, or 6. In particular, if , then the only primes dividing are 2, 3, and 5. (Theorem 5.1) If we can construct the regular p-gon, then we can construct , which is the root of an irreducible polynomial of degree . By Theorem 5.1, lies in a field of degree over , where the only primes that divide are 2, 3, and 5. But is a subfield of , so divides . In particular, for , must be divisible by 11, and for , N must be divisible by 7. This result establishes, considering prime-power regular polygons less than the 100-gon, that it is impossible to construct the 23-, 29-, 43-, 47-, 49-, 53-, 59-, 67-, 71-, 79-, 83-, and 89-gons with neusis. But it is not strong enough to decide the cases of the 11-, 25-, 31-, 41-, and 61-gons. Elliot Benjamin and Chip Snyder discovered in 2014 that the regular hendecagon (11-gon) is neusis constructible; the remaining cases are still open.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.