Théorème de HallEn mathématiques, le théorème de Hall ou lemme des mariages est un résultat combinatoire qui donne une condition nécessaire et suffisante, sur une famille d'ensembles finis, pour qu'il soit possible de choisir des éléments distincts, un par ensemble. Il a été démontré par Philip Hall et a été à l'origine de la théorie du couplage dans les graphes. On appelle système de représentants distincts d'une suite de n ensembles finis , toute suite de n éléments distincts tels que pour tout , appartienne à .
Fractional matchingIn graph theory, a fractional matching is a generalization of a matching in which, intuitively, each vertex may be broken into fractions that are matched to different neighbor vertices. Given a graph G = (V, E), a fractional matching in G is a function that assigns, to each edge e in E, a fraction f(e) in [0, 1], such that for every vertex v in V, the sum of fractions of edges adjacent to v is at most 1: A matching in the traditional sense is a special case of a fractional matching, in which the fraction of every edge is either 0 or 1: f(e) = 1 if e is in the matching, and f(e) = 0 if it is not.
Théorème des graphes parfaitsEn mathématiques, et plus précisément en théorie des graphes, le théorème des graphes parfaits (parfois appelé théorème fort des graphes parfaits) est une caractérisation des graphes parfaits par certains sous-graphes , conjecturée par Claude Berge en 1961. Maria Chudnovsky, Neil Robertson, Paul Seymour, et Robin Thomas en annoncèrent la démonstration en 2002, et la publièrent en 2006. Elle valut à leurs auteurs le prix Fulkerson de 2009.
Problème NP-completEn théorie de la complexité, un problème NP-complet ou problème NPC (c'est-à-dire un problème complet pour la classe NP) est un problème de décision vérifiant les propriétés suivantes : il est possible de vérifier une solution efficacement (en temps polynomial) ; la classe des problèmes vérifiant cette propriété est notée NP ; tous les problèmes de la classe NP se ramènent à celui-ci via une réduction polynomiale ; cela signifie que le problème est au moins aussi difficile que tous les autres problèmes de l
Théorème de DilworthLe théorème de Dilworth en théorie des ordres et en combinatoire, dû à Robert Dilworth, caractérise la largeur de tout ordre (partiel) fini en termes d'une partition de cet ordre en un nombre minimum de chaînes. Dans un ensemble ordonné, une antichaîne est une partie dont les éléments sont deux à deux incomparables et une chaîne est une partie dont les éléments sont deux à deux comparables. Le théorème de Dilworth établit, pour un ordre fini, l'existence d'une antichaîne A et d'une partition de l'ensemble ordonné en une famille P de chaînes, telles que A et P aient même cardinal.
Line graphEn théorie des graphes, le line graph L(G) d'un graphe non orienté G, est un graphe qui représente la relation d'adjacence entre les arêtes de G. Le nom line graph vient d'un article de Harary et Norman publié en 1960. La même construction avait cependant déjà été utilisée par Whitney en 1932 et Krausz en 1943. Il est également appelé graphe adjoint. Un des premiers et des plus importants théorèmes sur les line graphs est énoncé par Hassler Whitney en 1932, qui prouve qu'en dehors d'un unique cas exceptionnel, la structure de G peut être entièrement retrouvée à partir de L(G) dans le cas des graphes connexes.
Perfect graph theoremIn graph theory, the perfect graph theorem of states that an undirected graph is perfect if and only if its complement graph is also perfect. This result had been conjectured by , and it is sometimes called the weak perfect graph theorem to distinguish it from the strong perfect graph theorem characterizing perfect graphs by their forbidden induced subgraphs. A perfect graph is an undirected graph with the property that, in every one of its induced subgraphs, the size of the largest clique equals the minimum number of colors in a coloring of the subgraph.
Vertex coverIn graph theory, a vertex cover (sometimes node cover) of a graph is a set of vertices that includes at least one endpoint of every edge of the graph. In computer science, the problem of finding a minimum vertex cover is a classical optimization problem. It is NP-hard, so it cannot be solved by a polynomial-time algorithm if P ≠ NP. Moreover, it is hard to approximate – it cannot be approximated up to a factor smaller than 2 if the unique games conjecture is true. On the other hand, it has several simple 2-factor approximations.
Graphe parfaitEn théorie des graphes, le graphe parfait est une notion introduite par Claude Berge en 1960. Il s'agit d'un graphe pour lequel le nombre chromatique de chaque sous-graphe induit et la taille de la plus grande clique dudit sous-graphe induit sont égaux. Un graphe est 1-parfait si son nombre chromatique (noté ) est égal à la taille de sa plus grande clique (notée ) : . Dans ce cas, est parfait si et seulement si tous les sous graphes de sont 1-parfait.
Problème de la cliquethumb|upright=1.5|Recherche exhaustive d'une 4-clique dans ce graphe à 7 sommets en testant la complétude des C(7,4)= 35 sous-graphes à 4 sommets. En informatique, le problème de la clique est un problème algorithmique qui consiste à trouver des cliques (sous-ensembles de sommets tous adjacents deux à deux, également appelés sous-graphes complets) dans un graphe. Ce problème a plusieurs formulations différentes selon les cliques et les informations sur les cliques devant être trouvées.