Concept

Zonogon

In geometry, a zonogon is a centrally-symmetric, convex polygon. Equivalently, it is a convex polygon whose sides can be grouped into parallel pairs with equal lengths and opposite orientations. A regular polygon is a zonogon if and only if it has an even number of sides. Thus, the square, regular hexagon, and regular octagon are all zonogons. The four-sided zonogons are the square, the rectangles, the rhombi, and the parallelograms. The four-sided and six-sided zonogons are parallelogons, able to tile the plane by translated copies of themselves, and all convex parallelogons have this form. Every -sided zonogon can be tiled by parallelograms. (For equilateral zonogons, a -sided one can be tiled by rhombi.) In this tiling, there is parallelogram for each pair of slopes of sides in the -sided zonogon. At least three of the zonogon's vertices must be vertices of only one of the parallelograms in any such tiling. For instance, the regular octagon can be tiled by two squares and four 45° rhombi. In a generalization of Monsky's theorem, proved that no zonogon has an equidissection into an odd number of equal-area triangles. In an -sided zonogon, at most pairs of vertices can be at unit distance from each other. There exist -sided zonogons with unit-distance pairs. Zonogons are the two-dimensional analogues of three-dimensional zonohedra and higher-dimensional zonotopes. As such, each zonogon can be generated as the Minkowski sum of a collection of line segments in the plane. If no two of the generating line segments are parallel, there will be one pair of parallel edges for each line segment. Every face of a zonohedron is a zonogon, and every zonogon is the face of at least one zonohedron, the prism over that zonogon. Additionally, every planar cross-section through the center of a centrally-symmetric polyhedron (such as a zonohedron) is a zonogon.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.