PointclassIn the mathematical field of descriptive set theory, a pointclass is a collection of sets of points, where a point is ordinarily understood to be an element of some perfect Polish space. In practice, a pointclass is usually characterized by some sort of definability property; for example, the collection of all open sets in some fixed collection of Polish spaces is a pointclass. (An open set may be seen as in some sense definable because it cannot be a purely arbitrary collection of points; for any point in the set, all points sufficiently close to that point must also be in the set.
Théorie descriptive des ensemblesLa théorie descriptive des ensembles est une branche des mathématiques s'intéressant aux ensembles « définissables ». Son principal but est de classifier ces ensembles par complexité. Elle a de nombreux liens avec la théorie des ensembles et a des applications dans de nombreux domaines. Historiquement, les premières questions de la théorie descriptive des ensembles sont apparues à la suite de la découverte d'une erreur par Mikhaïl Souslin en dans une démonstration de Lebesgue.
Effective descriptive set theoryEffective descriptive set theory is the branch of descriptive set theory dealing with sets of reals having lightface definitions; that is, definitions that do not require an arbitrary real parameter (Moschovakis 1980). Thus effective descriptive set theory combines descriptive set theory with recursion theory. Effective Polish space An effective Polish space is a complete separable metric space that has a computable presentation. Such spaces are studied in both effective descriptive set theory and in constructive analysis.
Détermination (théorie des ensembles)La détermination est un sous-champ de la théorie des ensembles, une branche des mathématiques, qui s'intéresse aux conditions dans lesquelles un joueur peut avoir ou non une stratégie gagnante dans un jeu, à la complexité d'une telle stratégie quand elle existe, ainsi qu'aux conséquences de l'existence de telles stratégies. Les jeux étudiés en théorie des ensembles sont généralement des jeux de Gale-Stewart, c'est-à-dire des jeux à deux joueurs à où les joueurs font une suite infinie de coups et où aucun match nul n'est possible.
Hiérarchie analytiqueIn mathematical logic and descriptive set theory, the analytical hierarchy is an extension of the arithmetical hierarchy. The analytical hierarchy of formulas includes formulas in the language of second-order arithmetic, which can have quantifiers over both the set of natural numbers, , and over functions from to . The analytical hierarchy of sets classifies sets by the formulas that can be used to define them; it is the lightface version of the projective hierarchy.
Espace polonaisEn mathématiques, un espace métrisable à base dénombrable (ou séparable, cela revient au même pour un espace métrisable) est un espace polonais si sa topologie peut être définie par une distance qui en fait un espace complet. Tout espace compact métrisable, tout sous-espace fermé ou ouvert d'un espace polonais, tout produit dénombrable d'espaces polonais, tout espace de Banach séparable est un espace polonais. Cette terminologie a été introduite par le groupe Bourbaki, dans le volume sur la topologie générale de ses Éléments de mathématique.
Hiérarchie arithmétiquethumb|Illustration de la hiérarchie arithmétique. En logique mathématique, plus particulièrement en théorie de la calculabilité, la hiérarchie arithmétique, définie par Stephen Cole Kleene, est une hiérarchie des sous-ensembles de l'ensemble N des entiers naturels définissables dans le langage du premier ordre de l'arithmétique de Peano. Un ensemble d'entiers est classé suivant les alternances de quantificateurs d'une formule sous forme prénexe qui permet de le définir.
Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.