Look-elsewhere effectThe look-elsewhere effect is a phenomenon in the statistical analysis of scientific experiments where an apparently statistically significant observation may have actually arisen by chance because of the sheer size of the parameter space to be searched. Once the possibility of look-elsewhere error in an analysis is acknowledged, it can be compensated for by careful application of standard mathematical techniques.
Cum hoc ergo propter hocCum hoc ergo propter hoc (latin signifiant avec ceci, donc à cause de ceci) est un sophisme qui consiste à prétendre que si deux événements sont corrélés, alors, il y a un lien de cause à effet entre les deux. La confusion entre corrélation et causalité est appelée effet cigogne en zététique (en référence à la corrélation trompeuse entre le nombre de nids de cigognes et celui des naissances humaines) ; en science et particulièrement en statistique cette erreur est rappelée par la phrase « la corrélation n'implique pas la causalité », en latin : cum hoc sed non propter hoc (avec ceci, cependant pas à cause de ceci).
Estimation statisticsEstimation statistics, or simply estimation, is a data analysis framework that uses a combination of effect sizes, confidence intervals, precision planning, and meta-analysis to plan experiments, analyze data and interpret results. It complements hypothesis testing approaches such as null hypothesis significance testing (NHST), by going beyond the question is an effect present or not, and provides information about how large an effect is. Estimation statistics is sometimes referred to as the new statistics.
Analyse de la varianceEn statistique, lanalyse de la variance (terme souvent abrégé par le terme anglais ANOVA : analysis of variance) est un ensemble de modèles statistiques utilisés pour vérifier si les moyennes des groupes proviennent d'une même population. Les groupes correspondent aux modalités d'une variable qualitative (p. ex. variable : traitement; modalités : programme d'entrainement sportif, suppléments alimentaires; placebo) et les moyennes sont calculés à partir d'une variable continue (p. ex. gain musculaire).
Nuisance parameterIn statistics, a nuisance parameter is any parameter which is unspecified but which must be accounted for in the hypothesis testing of the parameters which are of interest. The classic example of a nuisance parameter comes from the normal distribution, a member of the location–scale family. For at least one normal distribution, the variance(s), σ2 is often not specified or known, but one desires to hypothesis test on the mean(s).
Binomial testIn statistics, the binomial test is an exact test of the statistical significance of deviations from a theoretically expected distribution of observations into two categories using sample data. The binomial test is useful to test hypotheses about the probability () of success: where is a user-defined value between 0 and 1. If in a sample of size there are successes, while we expect , the formula of the binomial distribution gives the probability of finding this value: If the null hypothesis were correct, then the expected number of successes would be .
ANOVA de FriedmanEn statistique, l'ANOVA de Friedman aussi appelée ANOVA de Friedman par rangs est un test statistique non-paramétrique développé par Milton Friedman. C'est une alternative non-paramétrique à l'analyse de variance à un facteur avec mesures répétées. Un exemple d'usage est si l'on considère n personnes chargées de noter k vins différents, est-ce que certains des k vins sont constamment classés plus haut ou plus bas que les autres ? Pour réaliser ce test il est nécessaire d'avoir des données arrangées de la même manière que pour une analyse de variance.
Type I and type II errorsIn statistical hypothesis testing, a type I error is the mistaken rejection of an actually true null hypothesis (also known as a "false positive" finding or conclusion; example: "an innocent person is convicted"), while a type II error is the failure to reject a null hypothesis that is actually false (also known as a "false negative" finding or conclusion; example: "a guilty person is not convicted").
Test exactIn statistics, an exact (significance) test is a test such that if the null hypothesis is true, then all assumptions made during the derivation of the distribution of the test statistic are met. Using an exact test provides a significance test that maintains the type I error rate of the test () at the desired significance level of the test. For example, an exact test at a significance level of , when repeated over many samples where the null hypothesis is true, will reject at most of the time.