Hirzebruch signature theoremIn differential topology, an area of mathematics, the Hirzebruch signature theorem (sometimes called the Hirzebruch index theorem) is Friedrich Hirzebruch's 1954 result expressing the signature of a smooth closed oriented manifold by a linear combination of Pontryagin numbers called the L-genus. It was used in the proof of the Hirzebruch–Riemann–Roch theorem. The L-genus is the genus for the multiplicative sequence of polynomials associated to the characteristic power series The first two of the resulting L-polynomials are: (for further L-polynomials see or ).
Signature (topology)In the field of topology, the signature is an integer invariant which is defined for an oriented manifold M of dimension divisible by four. This invariant of a manifold has been studied in detail, starting with Rokhlin's theorem for 4-manifolds, and Hirzebruch signature theorem. Given a connected and oriented manifold M of dimension 4k, the cup product gives rise to a quadratic form Q on the 'middle' real cohomology group The basic identity for the cup product shows that with p = q = 2k the product is symmetric.
Théorème de l'indice d'Atiyah-SingerEn mathématiques, et plus précisément en géométrie différentielle, le théorème de l'indice d'Atiyah-Singer, démontré par Michael Atiyah et Isadore Singer en 1963, affirme que pour un opérateur différentiel elliptique sur une variété différentielle compacte, l’indice analytique (lié à la dimension de l'espace des solutions) est égal à l’indice topologique (défini à partir d'invariants topologiques). De nombreux autres théorèmes, comme le théorème de Riemann-Roch, en sont des cas particuliers, et il a des applications en physique théorique.
CobordismeEn topologie différentielle, le cobordisme est une relation d'équivalence entre variétés différentielles compactes. Deux variétés compactes M et N sont dites cobordantes ou en cobordisme si leur réunion disjointe peut être réalisée comme le bord d'une variété à bord compacte L. On dit alors que cette variété L est un cobordisme entre M et N, ou bien que L réalise un cobordisme entre M et N. L'existence d'un tel cobordisme implique que M et N soient de même dimension.
Michael AtiyahSir Michael Francis Atiyah, né le à Londres et mort le , est un mathématicien anglais d'origine libanaise, fils de l'écrivain Edward Atiyah. Il est professeur à l'université d'Oxford, à l'université de Cambridge et à l'université de Princeton. Membre de la Royal Society depuis 1962, il en est président de 1990 à 1995. Il est lauréat de la médaille Fields 1966, du prix Abel 2004 et de la grande médaille 2010.