Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les implications éthiques du déploiement d'algorithmes d'apprentissage automatique et souligne l'importance de l'équité dans les processus décisionnels.
Explore le rôle des vérités fondamentales dans les algorithmes d'IA, en se concentrant sur la prédiction des néoantigènes pour l'immunothérapie du cancer et le projet TESLA.
Examine le cadre juridique de l'éthique de l'IA, y compris l'interprétation des lois, les sources des normes juridiques et l'interdiction des pratiques nocives de l'IA.
Introduit Q-Learning, Deep Q-Learning, l'algorithme REINFORCE et Monte-Carlo Tree Search dans l'apprentissage par renforcement, aboutissant à AlphaGo Zero.
Couvre l'importance de la soustraction de la récompense moyenne dans les méthodes de gradient de politique pour l'apprentissage par renforcement profond, réduisant le bruit dans le gradient stochastique.
Explore un article de 2019 sur la reconnaissance d'images, les défis liés aux ensembles de données, les biais et l'impact des ensembles de données à grande échelle sur les modèles d'apprentissage en profondeur.