En statistique, l'algorithme de Metropolis-Hastings est une méthode MCMC dont le but est d'obtenir un échantillonnage aléatoire d'une distribution de probabilité quand l'échantillonnage direct en est difficile. Plus formellement, étant donné une distribution de probabilité sur un univers , cet algorithme définit une chaîne de Markov dont la distribution stationnaire est . Il permet ainsi de tirer aléatoirement un élément de selon la loi . Un point essentiel de l'algorithme de Metropolis-Hastings est qu'il ne nécessite que la connaissance de à une constante multiplicative près. En particulier, il n'est pas nécessaire de calculer la fonction de partition de , tâche souvent difficile. Pour cette raison, cette méthode est très utilisée en physique statistique. On peut noter que l'algorithme de Metropolis–Hastings (comme d'autres méthodes MCMC) est généralement utilisé pour l'échantillonnage de distributions multi-dimensionnelles, en particulier lorsque le nombre de dimensions est élevé. Pour les distributions unidimensionnelles, il existe habituellement d'autres méthodes pour générer des échantillons indépendants (par exemple les méthodes de rejet) qui permettent d'éviter les corrélations entre échantillons générés, problème inhérent aux méthodes MCMC. Une première version de l'algorithme a été publiée en 1949 dans un article de Nicholas Metropolis et Stanisław Ulam et sera décrite plus en détails en 1953 par Nicholas Metropolis, Arianna W. Rosenbluth, Marshall Rosenbluth, Augusta H. Teller, et Edward Teller. Cette première version considérait le cas particulier de la distribution de Boltzmann, une des distributions les plus utilisées en physique statistique. En 1970, W. K. Hastings (1930-2016) a étendu l'algorithme au cas d'une distribution quelconque. Il y a controverse sur la question de la paternité de l'algorithme. Metropolis connaissait les aspects computationnels de la méthode et avait introduit le terme Monte Carlo dans son article de 1949 avec Stanisław Ulam.