Axiome de déterminationL'axiome de détermination est un axiome alternatif de la théorie des ensembles affirmant que certains jeux (au sens de la théorie des jeux) infinis sont déterminés. Cet axiome n'est pas compatible avec l'axiome du choix mais implique l'axiome du choix dénombrable pour les familles d'ensembles de réels et implique également une forme faible de l'hypothèse du continu.
Continuum (set theory)In the mathematical field of set theory, the continuum means the real numbers, or the corresponding (infinite) cardinal number, denoted by . Georg Cantor proved that the cardinality is larger than the smallest infinity, namely, . He also proved that is equal to , the cardinality of the power set of the natural numbers. The cardinality of the continuum is the size of the set of real numbers. The continuum hypothesis is sometimes stated by saying that no cardinality lies between that of the continuum and that of the natural numbers, , or alternatively, that .
Logique infinitaireUne logique infinitaire est une logique qui permet des formules infiniment longues ou des démonstrations infiniment longues. Certaines logiques infinitaires peuvent avoir des propriétés différentes de celles de la logique de premier ordre standard. En particulier, les logiques infinitaires peuvent ne pas être compactes ou complètes. Les notions de compacité et de complétude qui sont équivalentes en logique finitaire ne le sont pas forcément dans les logiques infinitaires.
Axiome de MartinEn théorie des ensembles, laxiome de Martin', introduit par Donald A. Martin et Robert M. Solovay en 1970, est un énoncé indépendant de ZFC, l'axiomatique usuelle de la théorie des ensembles. C'est une conséquence de l'hypothèse du continu, mais l'axiome de Martin est également cohérent avec la négation de celle-ci. Informellement, l'axiome de Martin affirme que tous les cardinaux strictement inférieurs à se comportent comme . C'est une généralisation du . Soit un cardinal.