Concept

Finite-valued logic

Concepts associés (6)
T-norm fuzzy logics
T-norm fuzzy logics are a family of non-classical logics, informally delimited by having a semantics that takes the real unit interval [0, 1] for the system of truth values and functions called t-norms for permissible interpretations of conjunction. They are mainly used in applied fuzzy logic and fuzzy set theory as a theoretical basis for approximate reasoning. T-norm fuzzy logics belong in broader classes of fuzzy logics and many-valued logics.
Logique de Łukasiewicz
En mathématique, la logique de Łukasiewicz est une logique polyvalente, non-classique. Elle a été définie à l'origine au début du par Jan Łukasiewicz comme une logique ternaire; elle a ensuite été généralisé à n-valeur (pour tous n fini) ainsi qu'à une infinité de variante à valeurs multiples, les deux sont propositionnelle et du premier ordre. La version א0-valeur a été publié en 1930 par Łukasiewicz et Alfred Tarski; par conséquent, elle est parfois appelé la logique de Łukasiewicz-Tarski.
Logique polyvalente
Les logiques polyvalentes (ou multivalentes, ou multivaluées) sont des alternatives à la logique classique aristotélicienne, bivalente, dans laquelle toute proposition doit être soit vraie soit fausse. Elles sont apparues à partir des années 1920, surtout à la suite des travaux du logicien polonais Jan Łukasiewicz. Elles sont principalement étudiées au niveau du seul calcul propositionnel et peu au niveau du calcul des prédicats.
Logique ternaire
La logique ternaire, ou logique 3 états, est une branche du calcul des propositions qui étend l'algèbre de Boole, en considérant, en plus des états VRAI et FAUX, l'état INCONNU. Dans la logique ternaire de Stephen Cole Kleene, les tables de vérité des fonctions de base sont les suivantes : D'une certaine manière, ces propriétés correspondent à l'intuition : par exemple, si on ignore si A est vrai ou faux, son inverse est tout aussi incertain. Les autres fonctions logiques se déduisent de par leur définition, la distributivité continuant à s'appliquer.
Principe de bivalence
Le principe de bivalence est un principe de logique selon lequel toute proposition p ne peut avoir qu'une seule des deux valeurs de vérité. Elle est soit vraie, soit fausse. Une logique respectant le principe de bivalence est dite logique bivalente. La logique classique est bivalente. Le principe de bivalence énonce que quelque chose est soit vrai, soit faux. Quelle que soit la proposition p, p est soit vraie, soit fausse. Le principe de bivalence rend les deux valeurs de vérité que sont le vrai et le faux conjointement exhaustifs.
Logique intuitionniste
La logique intuitionniste est une logique qui diffère de la logique classique par le fait que la notion de vérité est remplacée par la notion de preuve constructive. Une proposition telle que « la constante d'Euler-Mascheroni est rationnelle ou la constante d'Euler-Mascheroni n'est pas rationnelle » n'est pas démontrée de manière constructive (intuitionniste) dans le cadre de nos connaissances mathématiques actuelles, car la tautologie classique « P ou non P » (tiers exclu) n'appartient pas à la logique intuitionniste.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.