Résumé
In logic, a three-valued logic (also trinary logic, trivalent, ternary, or trilean, sometimes abbreviated 3VL) is any of several many-valued logic systems in which there are three truth values indicating true, false and some third value. This is contrasted with the more commonly known bivalent logics (such as classical sentential or Boolean logic) which provide only for true and false. Emil Leon Post is credited with first introducing additional logical truth degrees in his 1921 theory of elementary propositions. The conceptual form and basic ideas of three-valued logic were initially published by Jan Łukasiewicz and Clarence Irving Lewis. These were then re-formulated by Grigore Constantin Moisil in an axiomatic algebraic form, and also extended to n-valued logics in 1945. Around 1910, Charles Sanders Peirce defined a many-valued logic system. He never published it. In fact, he did not even number the three pages of notes where he defined his three-valued operators. Peirce soundly rejected the idea all propositions must be either true or false; boundary-propositions, he writes, are "at the limit between P and not P." However, as confident as he was that "Triadic Logic is universally true," he also jotted down that "All this is mighty close to nonsense." Only in 1966, when Max Fisch and Atwell Turquette began publishing what they rediscovered in his unpublished manuscripts, did Peirce's triadic ideas become widely known. As with bivalent logic, truth values in ternary logic may be represented numerically using various representations of the ternary numeral system. A few of the more common examples are: in balanced ternary, each digit has one of 3 values: −1, 0, or +1; these values may also be simplified to −, 0, +, respectively; in the redundant binary representation, each digit can have a value of −1, 0, 0/1 (the value 0/1 has two different representations); in the ternary numeral system, each digit is a trit (trinary digit) having a value of: 0, 1, or 2; in the skew binary number system, only the least-significant non-zero digit can have a value of 2, and the remaining digits have a value of 0 or 1; 1 for true, 2 for false, and 0 for unknown, unknowable/undecidable, irrelevant, or both; 0 for false, 1 for true, and a third non-integer "maybe" symbol such as ?, #, 1⁄2, or xy.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (7)
EE-110: Logic systems (for MT)
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
CH-244: Quantum chemistry
Introduction to Quantum Mechanics with examples related to chemistry
Afficher plus
Publications associées (39)

Overlapping Multipatch Isogeometric Method With Minimal Stabilization

Annalisa Buffa, Pablo Antolin Sanchez, Xiaodong Wei, Riccardo Puppi

We present a novel method for isogeometric analysis (IGA) to directly work on geometries constructed by Boolean operations including difference (i.e., trimming), union, and intersection. Particularly, this work focuses on the union operation, which involve ...
SIAM PUBLICATIONS2021

A Spectral Algorithm for 3-valued Function Equivalence Classification

Mathias Soeken

Spectral techniques for Boolean and multiple-valued functions have been well studied and found to be useful in logic design and testing for conventional circuits. Spectral techniques also have potential application for reversible and quantum circuits. This ...
OLD CITY PUBLISHING INC2020
Afficher plus
Concepts associés (16)
Logique
La logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Règle d'inférence
Dans un système logique, les régles d'inférence sont les règles qui fondent le processus de déduction, de dérivation ou de démonstration. L'application des règles sur les axiomes du système permet d'en démontrer les théorèmes. Une règle d'inférence est une fonction qui prend un -uplet de formules et rend une formule. Les formules arguments sont appelées « les prémisses » et la formule retournée est appelée la « conclusion ».
Logique paracohérente
En logique mathématique, une logique paracohérente (aussi appelé logique paraconsistante) est un système logique qui tolère les contradictions, contrairement au système de la logique classique. Les logiques tolérantes aux incohérences sont étudiées depuis au moins 1910, avec des esquisses remontant sans doute au temps d'Aristote. Le terme paracohérent - (à côté du cohérent, paraconsistent en anglais) - n'a été employé qu'après 1976 par le philosophe péruvien .
Afficher plus