Idempotent (ring theory)In ring theory, a branch of mathematics, an idempotent element or simply idempotent of a ring is an element a such that a2 = a. That is, the element is idempotent under the ring's multiplication. Inductively then, one can also conclude that a = a2 = a3 = a4 = ... = an for any positive integer n. For example, an idempotent element of a matrix ring is precisely an idempotent matrix. For general rings, elements idempotent under multiplication are involved in decompositions of modules, and connected to homological properties of the ring.
Équivalence de MoritaEn algèbre, et plus précisément en théorie des anneaux, l'équivalence de Morita est une relation entre anneaux. Elle est nommée d'après le mathématicien japonais Kiiti Morita qui l'a introduite dans un article de 1958. L'étude d'un anneau consiste souvent à explorer la catégorie des modules sur cet anneau. Deux anneaux sont en équivalence de Morita précisément lorsque leurs catégories de modules sont équivalentes. L'équivalence de Morita présente surtout un intérêt dans l'étude des anneaux non commutatifs.
Lemme de NakayamaLe lemme de Nakayama est un résultat fondamental d'algèbre commutative. Il doit son origine à , et Wolfgang Krull. Un énoncé général est le suivant : La démonstration de cet énoncé général se ramène à celle du cas particulier N = 0, c'est pourquoi le lemme de Nakayama est souvent énoncé sous cette forme : Le corollaire suivant est parfois également énoncé sous le nom de « lemme de Nakayama » : (En effet, pour tout élément a de R, 1 + a est inversible.) Soit une famille génératrice de M. Il existe des tels que pour tout i, .
Radical d'un idéalEn algèbre commutative, le radical (aussi appelé la racine) d'un idéal I dans un anneau commutatif A est l'ensemble des éléments de A dont une puissance appartient à I. Si A est un anneau principal, I est de la forme aA et son radical est l'idéal engendré par le produit des diviseurs irréductibles de a (chaque irréductible — à produit près par un inversible — n'apparaissant qu'une fois dans ce produit). En particulier dans Z, le radical d'un idéal nZ est l'idéal engendré par le radical de l'entier n.
Nil idealIn mathematics, more specifically ring theory, a left, right or two-sided ideal of a ring is said to be a nil ideal if each of its elements is nilpotent. The nilradical of a commutative ring is an example of a nil ideal; in fact, it is the ideal of the ring maximal with respect to the property of being nil. Unfortunately the set of nil elements does not always form an ideal for noncommutative rings. Nil ideals are still associated with interesting open questions, especially the unsolved Köthe conjecture.
Finitely generated moduleIn mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.
Socle (mathematics)In mathematics, the term socle has several related meanings. In the context of group theory, the socle of a group G, denoted soc(G), is the subgroup generated by the minimal normal subgroups of G. It can happen that a group has no minimal non-trivial normal subgroup (that is, every non-trivial normal subgroup properly contains another such subgroup) and in that case the socle is defined to be the subgroup generated by the identity. The socle is a direct product of minimal normal subgroups.
Algèbre de BanachEn mathématiques, l'algèbre de Banach est une des structures fondamentales de l'analyse fonctionnelle, portant le nom du mathématicien polonais Stefan Banach (1892-1945). On explicite cette définition : une algèbre de Banach A sur le corps K = R ou C est un espace vectoriel normé complet sur K (on note la norme) muni d'une loi interne notée multiplicativement, telle que quels que soient x, y, z éléments de A et élément de K : (associativité) ; et (bilinéarité) ; (sous-multiplicativité).
Idéal maximalUn idéal maximal est un concept associé à la théorie des anneaux en mathématiques et plus précisément en algèbre. Un idéal d'un anneau commutatif est dit maximal lorsqu’il est contenu dans exactement deux idéaux, lui-même et l'anneau tout entier. L'existence d'idéaux maximaux est assurée par le théorème de Krull. Cette définition permet de généraliser la notion d’élément irréductible à des anneaux différents de celui des entiers relatifs. Certains de ces anneaux ont un rôle important en théorie algébrique des nombres et en géométrie algébrique.
Essential extensionIn mathematics, specifically module theory, given a ring R and an R-module M with a submodule N, the module M is said to be an essential extension of N (or N is said to be an essential submodule or large submodule of M) if for every submodule H of M, implies that As a special case, an essential left ideal of R is a left ideal that is essential as a submodule of the left module RR. The left ideal has non-zero intersection with any non-zero left ideal of R. Analogously, an essential right ideal is exactly an essential submodule of the right R module RR.