La méthode de l'entropie-croisée (CE) attribuée à Reuven Rubinstein est une méthode générale d'optimisation de type Monte-Carlo, combinatoire ou continue, et d'échantillonnage préférentiel.
La méthode a été conçue à l'origine pour la simulation d'événements rares, où des densités de probabilité très faibles doivent être estimées correctement, par exemple dans l'analyse de la sécurité des réseaux, les modèles de , ou l'analyse des performances des systèmes de télécommunication.
La méthode CE peut être appliquée à tout problème d'optimisation combinatoire où les observations sont bruitées comme le problème du voyageur de commerce, l'optimisation quadratique, le problème d'alignement de séquences d'ADN, le problème de la coupure maximale et les problèmes d'allocation de mémoire, tout comme des problèmes d'optimisation continue avec de nombreux extrema locaux.
La méthode CE se décompose en deux phases :
Créer aléatoirement un échantillon de données (trajectoires, vecteurs, etc.) selon un mécanisme spécifique.
Mettre à jour les paramètres du mécanisme de création aléatoire à partir de l'échantillon de données pour produire un meilleur échantillon à l'itération suivante. Cette étape implique de minimiser l'entropie croisée ou la divergence de Kullback-Leibler.
Considérons le problème général d'estimation de la quantité , où est une fonction objectif et est une densité de probabilité paramétrique. En utilisant l'échantillonnage préférentiel cette quantité peut être estimée par , où est un échantillon de variables aléatoires de densité . Pour positif, l'optimum théorique de la densité de probabilité des variables aléatoires est donné par
Cependant est un paramètre inconnu. La méthode CE propose d'approcher la densité optimale en sélectionnant les éléments de l'échantillon qui sont les plus proches (au sens de Kullback-Leibler) de la densité optimale .
Choisir un vecteur des paramètres initial ; poser .
Créer un échantillon de variables aléatoires selon la densité
Calculer , où
Si l'algorithme a convergé alors stopper; sinon, incrémenter de 1 recommencer à l'étape 2.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Explore la simulation stochastique, les événements rares et la méthode Crude Monte Carlo, en soulignant l'importance des seuils et des expressions de forme fermée.
La recherche tabou est une métaheuristique d'optimisation présentée par Fred W. Glover en 1986. On trouve souvent l'appellation recherche avec tabous en français. Cette méthode est une métaheuristique itérative qualifiée de recherche locale au sens large. L'idée de la recherche tabou consiste, à partir d'une position donnée, à en explorer le voisinage et à choisir la position dans ce voisinage qui minimise la fonction objectif.
En algorithmique, le recuit simulé est une méthode empirique (métaheuristique) d'optimisation, inspirée d'un processus, le recuit, utilisé en métallurgie. On alterne dans cette dernière des cycles de refroidissement lent et de réchauffage (recuit) qui ont pour effet de minimiser l'énergie du matériau. Cette méthode est transposée en optimisation pour trouver les extrema d'une fonction. Elle a été mise au point par trois chercheurs de la société IBM, S. Kirkpatrick, C.D. Gelatt et M.P. Vecchi en 1983, et indépendamment par V.
Les algorithmes de colonies de fourmis (, ou ACO) sont des algorithmes inspirés du comportement des fourmis, ou d'autres espèces formant un superorganisme, et qui constituent une famille de métaheuristiques d’optimisation. Initialement proposé par Marco Dorigo dans les années 1990, pour la recherche de chemins optimaux dans un graphe, le premier algorithme s’inspire du comportement des fourmis recherchant un chemin entre leur colonie et une source de nourriture.
Decreasing defects, waste time, meeting customer demand and being adaptable are the goals of a Zero Defect Manufacturing (ZDM) strategy. Scheduling is an important tool to perform that. It should take in account buffer size allocation. In this study, a met ...
SPRINGER INTERNATIONAL PUBLISHING AG2020
This study presents an approach to the selection of optimal energy group structures for multi-group nodal diffusion analyses of Sodium-cooled Fast Reactor cores. The goal is to speed up calculations, particularly in transient calculations, while maintainin ...
2021
The assessment of the risk maps for the seismic vulnerability at large scale is based on the vulnerability of each building. In order to determine these vulnerabilities, it is first required to assign to each building its construction class. The constructi ...