Couvre les méthodes d'ensemble comme les forêts aléatoires et les baies de Naive de Gaussian, expliquant comment elles améliorent la précision de prédiction et estimer les distributions gaussiennes conditionnelles.
Explore les extrêmes de la capacité d'interprétation dans l'apprentissage automatique, en mettant l'accent sur les arbres de décision clairsemés et les réseaux neuraux interprétables.
Explore l'apprentissage supervisé en mettant l'accent sur les méthodes de régression, y compris l'ajustement des modèles, la régularisation, la sélection des modèles et l'évaluation du rendement.
Explore les arbres de décision, de l'induction à l'élagage, en mettant l'accent sur l'interprétabilité et les forces de sélection automatique des fonctionnalités, tout en abordant des défis tels que l'ajustement excessif.
Couvre les bases de l'apprentissage automatique, l'apprentissage supervisé et non supervisé, diverses techniques comme les voisins k-nearest et les arbres de décision, et les défis de l'ajustement excessif.