Explore la méthode de classification la plus proche du voisin, en discutant de ses limites dans les espaces de grande dimension et de l'importance de la corrélation spatiale pour des prédictions efficaces.
Couvre la théorie et la pratique des algorithmes de regroupement, y compris PCA, K-means, Fisher LDA, groupement spectral et réduction de dimensionnalité.
Explore PCA et LDA pour la réduction de dimensionnalité linéaire dans les données, en mettant l'accent sur les techniques de clustering et de séparation de classe.
Couvre les techniques de réduction de dimensionnalité, de regroupement et d'estimation de la densité, y compris l'ACP, les moyennes K, le MGM et le décalage moyen.
Explore l'analyse des composants principaux pour la réduction de la dimensionnalité dans l'apprentissage automatique, en présentant ses capacités d'extraction de fonctionnalités et de prétraitement de données.
Couvre l'analyse des composantes principales pour la réduction de dimensionnalité, en explorant ses applications, ses limites et l'importance de choisir les composantes appropriées.
Explore la réduction des dimensions linéaires grâce à la PCA, à la maximisation de la variance et à des applications réelles telles que l'analyse des données médicales.