En mathématiques, la théorie de Kummer, ainsi désignée suivant le nom du mathématicien allemand du Ernst Kummer, à la suite de ses travaux sur le dernier théorème de Fermat, donne une description de certaines extensions d'un corps contenant suffisamment de racines de l'unité. Soit un corps commutatif K contenant les racines n-èmes de l'unité, pour n un nombre entier premier à la caractéristique de K si elle est non nulle. Une extension L/K est de Kummer si le corps L est K-engendré par une racine d'un polynôme Xn-a à coefficients dans K. Par exemple, en caractéristique différente de 2, l'expression des racines des trinômes du second degré montre que toute extension quadratique est une extension de Kummer. En revanche, en caractéristique 2, il n'y a pas d'extension de Kummer de degré 2. Si le corps K ne contient aucune racine m-ème de a, pour m>1 divisant n, l'extension de Kummer de K donnée par les racines du polynôme Xn-a est une extension galoisienne, de groupe de Galois cyclique d'ordre n, dont un générateur est défini par son action sur une racine n-ème de a : où désigne une racine primitive n-ème de l'unité. Sans hypothèse sur les racines de a dans K, l'extension est cyclique d'ordre divisant n. Plus généralement, on parle d'extension de Kummer pour un compositum d'un nombre fini d'extensions de Kummer élémentaires telles que décrites ci-dessus, c'est-à-dire obtenues en adjoignant les racines n-èmes d'un nombre fini d'éléments ai du corps K. Un telle extension est à nouveau galoisienne, et son groupe de Galois est produit direct de groupes cycliques d'ordre divisant n, elle est donc abélienne, et son groupe de Galois a un exposant qui divise n. La théorie de Kummer traite les réciproques, c'est-à-dire la question : dans quelle mesure les extensions abéliennes d'un corps peuvent-elles être décrites à l'aide de racines n-èmes d'éléments de ce corps ? Une réponse est donnée par l'énoncé : si K est un corps contenant les racines n-èmes de l'unité, pour n un entier que ne divise pas la caractéristique de K, et si L est une extension abélienne finie de K, dont le groupe de Galois est d'exposant divisant n, alors il existe des éléments a1,.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
MATH-643: Applied l-adic cohomology
In this course we will describe in numerous examples how methods from l-adic cohomology as developed by Grothendieck, Deligne and Katz can interact with methods from analytic number theory (prime numb
Séances de cours associées (4)
Demande de lemme de Hensel
Discute de l'application du lemme de Hensel dans la détermination des racines nth et des éléments qui sont des puissances nth.
Extensions Ramifiées: Polynômes d'Eisenstein
Explore les extensions ramifiées et les polynômes d'Eisenstein, présentant leurs applications dans des contextes mathématiques.
Afficher plus
Publications associées (6)

Serre-Tate theory for Calabi-Yau varieties

Maciej Emilian Zdanowicz

Classical Serre-Tate theory describes deformations of ordinary abelian varieties. It implies that every such variety has a canonical lift to characteristic zero and equips the base of its universal deformation with a Frobenius lifting and canonical multipl ...
WALTER DE GRUYTER GMBH2021

Large Sieve Inequalities for Algebraic Trace Functions

Philippe Michel, Ping Xi

The large sieve inequalities for algebraic trace functions are considered in this article. A fundamental iterative relation is established by classical Fourier analysis, and l-adic Fourier analysis and multiplicative convolutions of sheaves are also requir ...
Oxford Univ Press2017

Algebraic Divisibility Sequences Over Function Fields

Valéry Aurélien Mahé

In this note we study the existence of primes and of primitive divisors in function field analogues of classical divisibility sequences. Under various hypotheses, we prove that Lucas sequences and elliptic divisibility sequences over function fields define ...
Australian Mathematical Society2012
Afficher plus
Concepts associés (6)
Corps de nombres
En mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Extension abélienne
En algèbre générale, plus précisément en théorie de Galois, une extension abélienne est une extension de Galois dont le groupe de Galois est abélien. Lorsque ce groupe est cyclique, l'extension est dite cyclique. Toute extension finie d'un corps fini est une extension cyclique. L'étude de la théorie des corps de classes décrit de façon détaillée toutes les extensions abéliennes dans le cas des corps de nombres, et des corps de fonctions de courbes algébriques sur des corps finis, ainsi que dans le cas des corps locaux (Théorie du corps de classes local).
Algèbre générale
L'algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l'étude des structures algébriques et de leurs relations. L'appellation algèbre générale s'oppose à celle d'algèbre élémentaire ; cette dernière enseigne le calcul algébrique, c'est-à-dire les règles de manipulation des formules et des expressions algébriques. Historiquement, les structures algébriques sont apparues dans différents domaines des mathématiques, et n'y ont pas été étudiées séparément.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.