Concept

Algèbre générale

Résumé
L'algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l'étude des structures algébriques et de leurs relations. L'appellation algèbre générale s'oppose à celle d'algèbre élémentaire ; cette dernière enseigne le calcul algébrique, c'est-à-dire les règles de manipulation des formules et des expressions algébriques. Historiquement, les structures algébriques sont apparues dans différents domaines des mathématiques, et n'y ont pas été étudiées séparément. C'est pourquoi l'algèbre générale possède beaucoup de connexions avec toutes les branches des mathématiques. L'étude des structures algébriques peut être faite de manière abstraite, mais unifiée dans le cadre de l'algèbre universelle. Comme dans d'autres parties des mathématiques, des problèmes et des exemples concrets ont joué un rôle important dans le développement de l'algèbre abstraite. Jusqu'à la fin du , beaucoup - ou plus - de ces problèmes étaient en quelque sorte liés à la théorie des équations algébriques. Les principaux thèmes sont les suivants: Résolution de systèmes d'équations linéaires, ce qui a conduit à l'algèbre linéaire Tentatives de trouver des formules aux solutions d'équations polynomiales générales de degré supérieur qui ont abouti à la découverte de groupes comme des manifestations abstraites de symétrie Études arithmétiques des formes de degré quadratique supérieur et des équations diophantiennes, qui ont produit directement les notions d'un anneau et idéal. La fin du et le début du a connu un énorme changement dans la méthodologie des mathématiques. L'algèbre abstraite a émergé autour du début du , sous le nom d'algèbre moderne. Son étude faisait partie de l'entraînement pour plus de rigueur intellectuelle en mathématiques. Les définitions officielles de certaines structures algébriques ont émergé au . En raison de sa généralité, l'algèbre abstraite est utilisée dans de nombreux domaines des mathématiques et de la science. Par exemple, la topologie algébrique utilise des objets algébriques pour son étude.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.