Carré parfaitEn mathématiques, un carré parfait (ou nombre carré s'il est non nul, voire simplement carré s'il n'y a pas ambiguïté) est le carré d'un entier. Dans le système de numération décimal, le chiffre des unités d'un carré parfait ne peut être que 0, 1, 4, 5, 6 ou 9. En base douze, ces chiffres sont nécessairement 0, 1, 4 ou 9. Un carré parfait est le carré d'un entier naturel. Un nombre carré est un nombre polygonal (donc entier strictement positif) qui peut être représenté géométriquement par un carré de n × n points.
Factor baseIn computational number theory, a factor base is a small set of prime numbers commonly used as a mathematical tool in algorithms involving extensive sieving for potential factors of a given integer. A factor base is a relatively small set of distinct prime numbers P, sometimes together with -1. Say we want to factorize an integer n. We generate, in some way, a large number of integer pairs (x, y) for which , , and can be completely factorized over the chosen factor base—that is, all their prime factors are in P.
Décomposition en produit de facteurs premiersvignette|Décomposition du nombre 864 en facteurs premiers En mathématiques et plus précisément en arithmétique, la décomposition en produit de facteurs premiers, aussi connue comme la factorisation entière en nombres premiers ou encore plus couramment la décomposition en facteurs premiers, consiste à chercher à écrire un entier naturel non nul sous forme d'un produit de nombres premiers. Par exemple, si le nombre donné est 45, la factorisation en nombres premiers est 3 × 5, soit 3 × 3 × 5.
Algorithme d'EuclideEn mathématiques, l'algorithme d'Euclide est un algorithme qui calcule le plus grand commun diviseur (PGCD) de deux entiers, c'est-à-dire le plus grand entier qui divise les deux entiers, en laissant un reste nul. L'algorithme ne requiert pas de connaître la factorisation de ces deux nombres. vignette|Peinture censée représenter le mathématicien Euclide d'Alexandrie, par Justus of Ghent. Selon Donald Knuth, l'algorithme d'Euclide est l'un des plus anciens algorithmes.
Nombre premiervignette|Nombres naturels de zéro à cent. Les nombres premiers sont marqués en rouge. vignette|Le nombre 7 est premier car il admet exactement deux diviseurs positifs distincts. Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et positifs. Ces deux diviseurs sont 1 et le nombre considéré, puisque tout nombre a pour diviseurs 1 et lui-même (comme le montre l’égalité n = 1 × n), les nombres premiers étant ceux qui ne possèdent pas d'autre diviseur.
Comparaison asymptotiqueEn mathématiques, plus précisément en analyse, la comparaison asymptotique est une méthode consistant à étudier la vitesse de croissance d'une fonction au voisinage d'un point ou à l'infini, en la comparant à celle d'une autre fonction considérée comme plus « simple ». Celle-ci est souvent choisie sur une échelle de référence, contenant en général au moins certaines fonctions dites élémentaires, en particulier les sommes et produits de polynômes, d'exponentielles et de logarithmes.