Résumé
En topologie algébrique, une sphère d'homologie (ou encore, sphère d'homologie entière) est une variété X de dimension n ≥ 1 qui a les mêmes groupes d'homologie que la n-sphère standard S, à savoir : H0(X,Z) = Z = Hn(X,Z) et Hi(X,Z) = {0} pour tout autre entier i. Une telle variété X est donc connexe, fermée (i.e. compacte et sans bord), orientable, et avec (à part b0 = 1) un seul nombre de Betti non nul : bn. Les sphères d'homologie rationnelle sont définies de façon analogue, avec l'homologie à coefficients rationnels. Toute sphère d'homologie entière est une sphère d'homologie rationnelle mais l'inverse n'est pas vrai. Pour n > 1, la nullité de b1 n'implique pas que X soit simplement connexe, mais seulement que son groupe fondamental soit parfait (voir théorème d'Hurewicz). La seule 3-sphère d'homologie qui soit simplement connexe est la 3-sphère usuelle S (voir Conjecture de Poincaré). Mis à part la sphère d'homologie de Poincaré (cf. ci-dessous), toutes les autres ont un groupe fondamental infini. L'existence de 3-sphères d'homologie non simplement connexes montre que la conjecture de Poincaré ne peut pas se formuler en termes purement homologiques. La sphère d'homologie de Poincaré (à ne pas confondre avec la sphère de Poincaré) est une 3-sphère d'homologie particulière. Son groupe fondamental est le . Ce groupe admet la présentation , est d'ordre 120 et est isomorphe au groupe SL(2,Z/5Z). Le groupe binaire icosaédrique est le groupe d'isométries laissant invariant l'icosaèdre élémentaire. Il est aussi le revêtement double parfait du groupe icosaédrique . La sphère d'homologie de Poincaré se construit de diverses manières. Une première est à partir du dodécaèdre par identification de chaque face avec la face opposée, en choisissant la rotation d'angle minimum qui superpose ces deux faces (voir l'article Espace dodécaédrique de Poincaré). On obtient ainsi une 3-variété fermée. (Les deux autres choix possibles de rotation donnent soit une – l' – soit l'espace projectif ).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.