En physique statistique, un ensemble statistique est une abstraction qui consiste à considérer une collection de copies virtuelles (ou répliques) d'un système physique dans l'ensemble des états accessibles où il est susceptible de se trouver, compte tenu des contraintes extérieures qui lui sont imposées, telles le volume, le nombre de particules, l'énergie et la température. Cette notion, introduite par le physicien américain Josiah Willard Gibbs en 1902, est un concept central de la physique statistique.
En effet l'état microscopique d'un système physique fluctue en général au cours du temps, même si celui-ci est à l'équilibre. Sauf pour des systèmes très simples il est impossible de connaître exactement à tout instant ces fluctuations, ne serait ce qu'en raison du très grand nombre de degrés de liberté microscopiques du système. Or les grandeurs physiques, telles l'énergie, la pression et la densité, résultent en principe de l'évaluation de moyennes temporelles qu'il est pratiquement impossible de calculer directement. Plutôt qu'un système unique il est donc préférable de considérer une collection de répliques de celui-ci, soumises aux mêmes contraintes extérieures que celles qui lui sont imposées, telles le volume, l'énergie, le nombre de particules et la température. Au sein de l'ensemble de ces répliques, le système ne se trouve pas nécessairement dans des micro-états identiques, bien que ceux-ci doivent être compatibles avec les contraintes extérieures (états accessibles).
À un instant donné, il est possible de dénombrer les répliques qui au sein des constituant l'ensemble sont dans un micro-état donné, noté . À la limite où devient très élevé, la fréquence tend vers la probabilité de trouver le système dans ce micro-état au sein de l'ensemble. À l'équilibre, cette probabilité sera indépendante du temps.
La détermination de la distribution de probabilité des micro-états du système au sein de cet ensemble permet alors de calculer une grandeur physique donnée f comme une moyenne d'ensemble
la sommation portant sur tous les micro-états accessibles du système, pour lesquels la grandeur considérée prend la valeur .