Résumé
Soft-body dynamics is a field of computer graphics that focuses on visually realistic physical simulations of the motion and properties of deformable objects (or soft bodies). The applications are mostly in video games and films. Unlike in simulation of rigid bodies, the shape of soft bodies can change, meaning that the relative distance of two points on the object is not fixed. While the relative distances of points are not fixed, the body is expected to retain its shape to some degree (unlike a fluid). The scope of soft body dynamics is quite broad, including simulation of soft organic materials such as muscle, fat, hair and vegetation, as well as other deformable materials such as clothing and fabric. Generally, these methods only provide visually plausible emulations rather than accurate scientific/engineering simulations, though there is some crossover with scientific methods, particularly in the case of finite element simulations. Several physics engines currently provide software for soft-body simulation. The simulation of volumetric solid soft bodies can be realised by using a variety of approaches. In this approach, the body is modeled as a set of point masses (nodes) connected by ideal weightless elastic springs obeying some variant of Hooke's law. The nodes may either derive from the edges of a two-dimensional polygonal mesh representation of the surface of the object, or from a three-dimensional network of nodes and edges modeling the internal structure of the object (or even a one-dimensional system of links, if for example a rope or hair strand is being simulated). Additional springs between nodes can be added, or the force law of the springs modified, to achieve desired effects. Applying Newton's second law to the point masses including the forces applied by the springs and any external forces (due to contact, gravity, air resistance, wind, and so on) gives a system of differential equations for the motion of the nodes, which is solved by standard numerical schemes for solving ODEs.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.