Un module M sur un anneau A est dit simple ou irréductible si M n'est pas le module nul et il n'existe pas de sous-modules de M en dehors de {0} et M. Les Z-modules simples sont les groupes abéliens simples, c'est-à-dire les groupes cycliques d'ordre premier. Les espaces vectoriels simples (sur un corps non nécessairement commutatif) sont les droites vectorielles. Étant donné un anneau A et I un idéal à gauche non nul de A, I est un A-module simple si et seulement si I est un idéal minimal à gauche. Soient A un anneau unitaire et M un A-module simple. Alors M est un A-module monogène, engendré par n'importe quel élément non nul x de M. En effet, Ax est un sous-module non nul de M, donc c'est M. La réciproque est fausse, par exemple le Z-module Z est monogène (engendré par 1) mais pas simple. Soit x un élément non nul M. Alors l'ensemble des éléments a de A tels que ax = 0 est un idéal à gauche maximal I de A, et l'application a↦ax de A dans M est A-linéaire, et par passage au quotient, définit un isomorphisme de A-modules de A/I sur M. Réciproquement, pour tout idéal à gauche J de A, pour que le A-module A/J soit simple, il faut et il suffit que J soit un élément maximal de l'ensemble des idéaux à gauche de A différent de A. Les modules simples sont les modules de longueur 1. Un module simple est un module indécomposable, c'est-à-dire qu'il n'est pas isomorphe à une somme directe de deux modules non nuls. La réciproque est fausse : par exemple, les Z-modules de type fini indécomposables sont Z et les groupes cycliques d'ordre p avec p premier et n > 0. Contrairement à ce qui se passe pour des espaces vectoriels, un module non nul peut ne pas posséder de sous-module simple. Par exemple, tous les sous-modules non nuls de Z sont isomorphes à Z donc non simples. Soient A un anneau, M et N des A-modules et f une application A-linéaire de M dans N. Si M est simple, alors f est soit nulle, soit injective (en effet, le noyau de f est un sous-module de M, donc {0} ou M).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.