Principe d'équivalenceOn énumère en général trois principes d'équivalence : le principe « faible », celui d'Einstein et le principe « fort ». Le premier est le constat de l'égalité entre la masse inertielle et la masse gravitationnelle. Albert Einstein présente le second comme une « interprétation » du premier en termes d'équivalence locale entre la gravitation et l'accélération (elles sont localement indistinguables) ; c'est un élément clé de la construction de la relativité générale.
Décalage vers le rougeLe décalage vers le rouge (en en anglais) est un phénomène astronomique de décalage vers les grandes longueurs d'onde des raies spectrales et de l'ensemble du spectre — ce qui se traduit par un décalage vers le rouge pour le spectre visible — observé parmi les objets astronomiques lointains. À la suite des travaux de Lemaître et Hubble c'est un phénomène bien documenté, considéré comme la preuve initiale de l'expansion de l'Univers et du modèle cosmologique avec le Big Bang.
Faux videDans la théorie quantique des champs, le faux vide est un secteur d'espace métastable qui semble être un vide par analyse perturbative mais qui est instable sous les effets instanton (effet tunnel vers un potentiel plus bas). En physique théorique du faux vide, un système métastable transite vers un vide de plus basse énergie par un processus connu sous le nom de nucléation de bulle. Dans une approche semi-classique, la transition est modélisée par l'apparition d'une bulle dans laquelle les champs ont la valeur d'attente du vide et qui est due aux effets des instantons.
Mesure des distances en astronomiePlusieurs méthodes ont été identifiées pour mesurer des en astronomie. Chaque méthode n'est applicable que pour une certaine échelle. Le recoupement des méthodes permet, de proche en proche, de mesurer la distance des objets les plus lointains de l'univers observable. Rayon de la Terre La première mesure effectuée en astronomie a été conçue au par Ératosthène. Son calcul est simple : le Soleil est si éloigné que ses rayons arrivent parallèlement en tout point de la Terre.
Équations de FriedmannLes équations de Friedmann-Lemaître sont les équations de la relativité générale (appelées équations d'Einstein) écrites dans le contexte d'un modèle cosmologique homogène et isotrope, ce dernier étant représenté par une métrique de Robertson-Walker. Elles régissent donc l'évolution du taux d'expansion de l'Univers et par suite de la distance entre deux astres lointains (le facteur d'échelle) et en fonction du temps appelé dans ce contexte temps cosmique.
Principe cosmologiqueLa cosmologie ne peut s’envisager qu’en faisant des hypothèses simplificatrices que l’on appelle des « principes cosmologiques ». Sans cet artifice, il faudrait en effet connaître les vitesses et les positions de toutes les particules dans l’espace, ce qui est tout simplement impossible. On distingue actuellement quatre grands principes : Le principe cosmologique d'homogénéité et d'isotropie ; Le principe cosmologique parfait (ou d'équivalence temporelle) ; Le principe cosmologique global ; Le principe cosmologique de l'Univers fractal.
Fond diffus cosmologiqueLe fond diffus cosmologique (FDC, ou CMB pour l'anglais cosmic microwave background, « fond cosmique de micro-ondes ») est un rayonnement électromagnétique très homogène observé dans toutes les directions du ciel et dont le pic d'émission est situé dans le domaine des micro-ondes. On le qualifie de diffus parce qu'il ne provient pas d'une ou plusieurs sources localisées, et de cosmologique parce que, selon l'interprétation qu'on en fait, il est présent dans tout l'Univers (le cosmos).
Énergie du videL'énergie du vide est une énergie sous-jacente qui existe partout dans l'espace, à travers l'Univers. Il s'agit du cas particulier d'énergie de point zéro d'un système quantique, où le « système physique » ne contient pas de matière. Cette énergie correspond à l'énergie du point zéro de tous les champs quantiques de l'espace, ce qui, pour le modèle standard, inclut le champ électromagnétique, les champs de jauge et les champs fermioniques, ainsi que le champ de Higgs électrofaible.
Fond cosmologique de neutrinosLe fond cosmologique de neutrinos (, en abrégé : CNB ou CνB (lire : « C-nu-B ») représente l'ensemble des neutrinos qui ont été produits lors du Big Bang. Ils représentent en nombre et en énergie totale la très grande majorité des neutrinos de tout l'univers. L'énergie individuelle des neutrinos cosmologiques est par contre très faible. Elle est du même ordre que celle des photons du fond diffus cosmologique, soit environ 0,2 milliélectron-volt si leur masse est nulle.
Constante cosmologiqueLa constante cosmologique est un paramètre ajouté par Einstein en février 1917 à ses équations de la relativité générale (1915), dans le but de rendre sa théorie compatible avec l'idée qu'il avait alors d'un Univers statique. La constante cosmologique est notée . Elle a la dimension d'une courbure de l'espace, . Depuis la fin des années 1990, les développements de la cosmologie ont montré que l'expansion de l'Univers, interprétée en termes de masse et d'énergie, pouvait être attribuée à 68 % à une « énergie sombre » dont l'effet est celui de la constante cosmologique.