Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les concepts de lunettes de spin et d'estimation bayésienne, en se concentrant sur l'observation et la déduction de l'information d'un système de près.
Déplacez-vous dans des modèles générateurs basés sur les scores, explorant les distributions naturelles d'apprentissage et l'impact de l'architecture de réseau neuronal sur la robustesse.
Explore l'application de modèles générateurs profonds dans la découverte de médicaments, en mettant l'accent sur la conception de petites molécules et l'optimisation des structures moléculaires.
Couvre la modélisation de la volatilité dans la gestion des risques, y compris l'ARMA, l'ARCH, les modèles GARCH, la représentation causale et la prévision.
Introduit une estimation de vraisemblance maximale en économétrie, couvrant les principes, les propriétés, les applications et les tests de spécification.
Explore la modélisation des signaux neurobiologiques, en se concentrant sur les pics, la vitesse de tir, plusieurs neurones d'état, et l'estimation des paramètres.