Passer au contenu principal
Graph
Search
fr
en
Se Connecter
Recherche
Tous
Catégories
Concepts
Cours
Séances de cours
MOOCs
Personnes
Exercices
Publications
Start-ups
Unités
Afficher tous les résultats pour
Accueil
Concept
Maximum cardinality matching
Graph Chatbot
Séances de cours associées (28)
Connectez-vous pour filtrer par séance de cours
Connectez-vous pour filtrer par séance de cours
Réinitialiser
Précédent
Page 1 sur 3
Suivant
Dualité de programmation linéaire
Explore la dualité de programmation linéaire, couvrant les contraintes, les variables, les solutions et la relation entre les LP primal et dual.
Algorithme de changement cupide : Optimisation et stabilité
Explore l'optimalité de l'algorithme de changement gourmand et la stabilité de la correspondance maximale.
Matching bipartite non pondéré
Introduit l'appariement bipartite non pondéré et sa solution en utilisant la programmation linéaire et la méthode simplex.
Matroids: Intersection matroid
Couvre le concept de matroids, se concentrant sur l'intersection matroid et les propriétés des sous-ensembles d'un ensemble de sol.
Algorithmes graphiques : Ford-Fulkerson et composants fortement connectés
Discute de la méthode Ford-Fulkerson et des composants fortement connectés dans les algorithmes graphiques.
Algorithmes : Union Find et Minimum Spanning Trees
Discute des structures de données Union-Find et des arbres de spanning minimum, couvrant les algorithmes et leurs applications dans la conception et l'optimisation de réseaux.
Programmation linéaire : correspondance bipartite pondérée
Couvre la programmation linéaire, la correspondance bipartite pondérée et les problèmes de couverture de sommet en optimisation.
Comparaison des regroupements hiérarchiques
Couvre la dérivation et l'utilisation d'une mesure de similarité entre les regroupements hiérarchiques, en se concentrant sur la mesure Bk.
Algorithmes: Stable Matchings
Couvre le concept d'appariement stable et l'algorithme de Gale-Shapley.
Théorème de Min-Cut Max-Flow
Explore le théorème de Max-flow Min-cut, les capacités intégrales, la méthode Ford-Fulkerson, l'appariement bipartite et les chemins disjoints.