Coefficient constantEn mathématiques, le coefficient constant d'un polynôme est le coefficient de son monôme de degré 0. Autrement dit, en notant un polynôme sous sa forme développée et ordonnée par puissances croissantes : alors son coefficient constant est l'élément , éventuellement nul. Ce coefficient correspond à la valeur en 0 de la fonction polynomiale associée. En analyse réelle, il est donc aussi l'ordonnée à l'origine de sa courbe représentative.
Théorème d'inversion de LagrangeEn mathématiques, le théorème d'inversion de Lagrange fournit le développement en série de certaines fonctions définies implicitement ; la formule d'inversion de Lagrange, connue aussi sous le nom de formule de Lagrange-Bürmann, en est un cas particulier donnant le développement en série de Taylor de la bijection réciproque d'une fonction analytique. Si z est une fonction de x, de y et d'une fonction f indéfiniment dérivable, telle que alors pour toute fonction g indéfiniment dérivable, on a pour y petit, si la série converge (voir plus loin pour la version formelle de cette identité).
Vecteur de WittLes vecteurs de Witt sont des objets mathématiques, généralement décrits comme des suites infinies de nombres (ou plus généralement d'éléments d'un anneau). Ils ont été introduits par Ernst Witt en 1936, afin de décrire les extensions non ramifiées des corps de nombres p-adiques. Ces vecteurs sont dotés d'une structure d'anneau ; on parle donc de l’anneau des vecteurs de Witt. Ils apparaissent aujourd'hui dans plusieurs branches de la géométrie algébrique et arithmétique, en théorie des groupes et en physique théorique.
Linear recurrence with constant coefficientsIn mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence. The polynomial's linearity means that each of its terms has degree 0 or 1.