Coefficient binomialEn mathématiques, les coefficients binomiaux, ou coefficients du binôme, définis pour tout entier naturel n et tout entier naturel k inférieur ou égal à n, donnent le nombre de parties à k éléments d'un ensemble à n éléments. On les note - qui se lit « k parmi n » - ou , la lettre C étant l'initiale du mot « combinaison » Les coefficients binomiaux s'expriment à l'aide de la fonction factorielle : Ils interviennent dans de nombreux domaines des mathématiques : développement du binôme en algèbre, dénombrements, développement en série, lois de probabilités, etc.
Anneau de valuation discrèteEn mathématiques, plus précisément en algèbre commutative, un anneau de valuation discrète est un anneau de valuation dont la valuation est discrète mais non triviale. Un anneau est de valuation discrète lorsqu'il est principal, qu'il ne possède qu'un idéal maximal, et que cet idéal est non nul. Cette notion est utilisée en théorie algébrique des nombres et en géométrie algébrique ; elle constitue un outil d'étude des anneaux noethériens, en particulier les anneaux de Dedekind.
Localisation (mathématiques)En algèbre, la localisation est une des opérations de base de l'algèbre commutative. C'est une méthode qui construit à partir d'un anneau commutatif un nouvel anneau. La construction du corps des fractions est un cas particulier de la localisation. La localisation consiste à rendre inversibles les éléments d'une partie (« partie multiplicative ») de l'anneau. L'exemple le plus connu est le corps des fractions d'un anneau intègre qui se construit en rendant inversibles tous les éléments non nuls de l'anneau.
Série de PuiseuxEn mathématiques, les séries de Puiseux sont une généralisation des séries formelles, introduites pour la première fois par Isaac Newton en 1676 et redécouvertes par Victor Puiseux en 1850, qui permet à l'exposant de l'indéterminée d'être négatif ou fractionnel (tout en étant, pour une série donnée, borné inférieurement et de dénominateur borné). Une série de Puiseux d'indéterminée T est une série formelle de Laurent en T (où n est un entier strictement positif) ; elle peut donc s'écrire : avec k entier relatif.
Série de LaurentCet article traite du développement en série de Laurent en analyse complexe. Pour la définition et les propriétés des séries de Laurent formelles en algèbre, veuillez consulter l'article Série formelle. En analyse complexe, la série de Laurent (aussi appelée développement de Laurent) d'une fonction holomorphe f est une manière de représenter f au voisinage d'une singularité, ou plus généralement, autour d'un « trou » de son domaine de définition. On représente f comme somme d'une série de puissances (d'exposants positifs ou négatifs) de la variable complexe.
Anneau noethérienEn mathématique, un anneau noethérien est un cas particulier d'anneau, c'est-à-dire d'un ensemble muni d'une addition et d'une multiplication compatible avec l'addition, au sens de la distributivité. De nombreuses questions mathématiques s'expriment dans un contexte d'anneau, les endomorphismes d'un espace vectoriel ou d'un module sur un anneau, les entiers algébriques de la théorie algébrique des nombres, ou encore les surfaces de la géométrie algébrique.
Radical de JacobsonEn algèbre, le radical de Jacobson d'un anneau commutatif est l'intersection de ses idéaux maximaux. Cette notion est due à Nathan Jacobson qui le premier en a fait l'étude systématique. Un élément x appartient au radical de Jacobson de l'anneau A si et seulement si 1 + ax est inversible pour tout a de A. Notons J le radical de Jacobson de l'anneau commutatif A et exploitons le fait que (d'après le théorème de Krull) 1 + ax est non inversible si et seulement s'il appartient à un idéal maximal.
IndéterminéeExemple de polynôme à coefficients entiers, d'indéterminée . En mathématiques, une indéterminée est le concept permettant de formaliser des objets comme les polynômes formels, les fractions rationnelles ou encore les séries formelles. On la désigne en général par la lettre majuscule X. L'indéterminée permet de définir des structures algébriques parfois plus simples que leurs équivalents en analyse. Par exemple, sur tout anneau intègre, le corps des fractions rationnelles, défini à l'aide de l'indéterminée X, diffère de la structure équivalente des fonctions rationnelles de la variable x.
Anneau topologiqueEn mathématiques, un anneau topologique est un anneau muni d'une topologie compatible avec les opérations internes, c'est-à-dire telle que l'addition, l'application opposée et la multiplication soient continues. Un corps topologique est un corps muni d'une topologie qui rend continues l'addition, la multiplication et l'application inverse. Ces structures étendent la notion de groupe topologique. Tous les corps de nombres usuels (rationnels, réels, complexes, p-adiques) ont une ou plusieurs topologies classiques qui en font des corps topologiques.
I-adic topologyIn commutative algebra, the mathematical study of commutative rings, adic topologies are a family of topologies on the underlying set of a module, generalizing the p-adic topologies on the integers. Let R be a commutative ring and M an R-module. Then each ideal a of R determines a topology on M called the a-adic topology, characterized by the pseudometric The family is a basis for this topology. With respect to the topology, the module operations of addition and scalar multiplication are continuous, so that M becomes a topological module.