MATH-657: Deformation TheoryWe will study classical and modern deformation theory of schemes and coherent sheaves. Participants should have a solid background in scheme-theory, for example being familiar with the first 3 chapter
MATH-658: Vanishing cycles and perverse sheavesThis course will explain the theory of vanishing cycles and perverse sheaves. We will see how the Hard Lefschetz theorem can be proved using perverse sheaves. If we have more time we will try to see t
MATH-410: Riemann surfacesThis course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MATH-101(e): Analysis IÉtudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-124: Geometry for architects ICe cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
MATH-643: Applied l-adic cohomologyIn this course we will describe in numerous examples how methods from l-adic cohomology as developed by Grothendieck, Deligne and Katz can interact with methods from analytic number theory (prime numb