Ascending chain condition on principal idealsIn abstract algebra, the ascending chain condition can be applied to the posets of principal left, principal right, or principal two-sided ideals of a ring, partially ordered by inclusion. The ascending chain condition on principal ideals (abbreviated to ACCP) is satisfied if there is no infinite strictly ascending chain of principal ideals of the given type (left/right/two-sided) in the ring, or said another way, every ascending chain is eventually constant.
Idéal fractionnairevignette|Richard Dedekind donne en 1876 la définition d'idéal fractionnaire. En mathématiques, et plus précisément en théorie des anneaux, un idéal fractionnaire est une généralisation de la définition d'un idéal. Ce concept doit son origine à la théorie algébrique des nombres. Pour résoudre certaines équations diophantiennes, cette théorie utilise des anneaux d'entiers généralisant celui des entiers relatifs.
Anneau de BézoutEn algèbre commutative, un anneau quasi-bézoutien est un anneau où la propriété de Bézout est vérifiée ; plus formellement, c'est un anneau dans lequel tout idéal de type fini est principal. Un anneau de Bézout, ou anneau bézoutien, est un anneau quasi-bézoutien intègre. Un idéal de type fini est un idéal engendré par un nombre fini d'éléments. Un idéal engendré par un élément a est dit idéal principal et se note aA. Un idéal engendré par deux éléments a et b se note aA + bA, il est constitué des éléments de A pouvant s'écrire sous la forme au + bv avec u et v éléments de A.
Multiplicatively closed setIn abstract algebra, a multiplicatively closed set (or multiplicative set) is a subset S of a ring R such that the following two conditions hold: for all . In other words, S is closed under taking finite products, including the empty product 1. Equivalently, a multiplicative set is a submonoid of the multiplicative monoid of a ring. Multiplicative sets are important especially in commutative algebra, where they are used to build localizations of commutative rings. A subset S of a ring R is called saturated if it is closed under taking divisors: i.