Explore la régression logistique pour les variables de réponse binaire, couvrant des sujets tels que l'interprétation du rapport de cotes et l'ajustement du modèle.
Explore l'interprétation des réponses binaires, les fonctions de liaison, la régression logistique et la sélection des modèles à l'aide de déviances et de critères d'information.
Discute de la géométrie des moindres carrés, en explorant les perspectives des lignes et des colonnes, les hyperplans, les projections, les résidus et les vecteurs uniques.
Explore la régression linéaire gaussienne, la matrice de conception, l'estimation des moindres carrés et l'interprétation géométrique dans l'analyse de régression linéaire.
Couvre la maximisation des revenus dans les modèles de choix, les stratégies de tarification, la concurrence sur le marché, et un exemple de modèle binaire logit.
Introduit une régression linéaire simple, les propriétés des résidus, la décomposition de la variance et le coefficient de détermination dans le contexte de la loi d'Okun.