Concept

Charles Sanders Peirce

Concepts associés (11)
Relation algebra
In mathematics and abstract algebra, a relation algebra is a residuated Boolean algebra expanded with an involution called converse, a unary operation. The motivating example of a relation algebra is the algebra 2 X 2 of all binary relations on a set X, that is, subsets of the cartesian square X2, with R•S interpreted as the usual composition of binary relations R and S, and with the converse of R as the converse relation. Relation algebra emerged in the 19th-century work of Augustus De Morgan and Charles Peirce, which culminated in the algebraic logic of Ernst Schröder.
Auguste De Morgan
Auguste (ou Augustus) De Morgan ( à Madurai (Tamil Nadu) - ) est un mathématicien et logicien britannique, né en Inde. Il est le fondateur avec Boole de la logique moderne ; il a notamment formulé les lois de De Morgan. Né d'un père colonel dans l'armée au service de la compagnie des Indes orientales, sa mère est une descendante de James Dodson, qui établit une table d'antilogarithmes. À cause des révoltes, le colonel envoie sa famille en Angleterre alors que Auguste a sept mois.
Relation (mathématiques)
Une relation entre objets mathématiques d'un certain domaine est une propriété qu'ont, ou non, entre eux certains de ces objets ; ainsi la relation d'ordre strict, notée « < », définie sur N l'ensemble des entiers naturels : 1 < 2 signifie que 1 est en relation avec 2 par cette relation, et on sait que 1 n'est pas en relation avec 0 par celle-ci. Une relation est très souvent une relation binaire, définie sur un ensemble comme la relation d'ordre strict sur N, ou entre deux ensembles.
Relation ternaire
En mathématiques, une relation ternaire est une relation d'arité 3, de même que les relations binaires, plus courantes, sont d'arité 2. Formellement, une relation ternaire est donc représentée par son graphe, qui est une partie du produit X × Y × Z de trois ensembles X, Y et Z. Le graphe d'une fonction de deux variables f : X × Y → Z, c'est-à-dire l'ensemble des triplets de la forme (x, y, f(x, y)), représente la relation ternaire R définie par : R(x, y, z) si z est l' de (x, y) par f.
Logique algébrique
En logique mathématique, la logique algébrique est le raisonnement obtenu en manipulant des équations avec des variables libres. Ce qui est maintenant généralement appelé la logique algébrique classique se concentre sur l'identification et la description algébrique des modèles adaptés à l'étude de différentes logiques (sous la forme de classes d'algèbres qui constituent la sémantique algébrique de ces systèmes déductifs) et aux problèmes connexes, comme la représentation et la dualité.
Algèbre relationnelle
L'algèbre relationnelle est un langage de requêtes dans des bases de données relationnelles. L'algèbre relationnelle a été inventée en 1970 par Edgar Frank Codd, le directeur de recherche du centre IBM de San José. Il s'agit de la théorie sous-jacente aux langages de requête des SGBD, comme SQL. Le théorème de Codd dit que l'algèbre relationnelle est équivalente au calcul relationnel (logique du premier ordre sans symbole de fonction). Elle est aussi équivalente à Datalog¬ (Datalog avec la négation) non récursif.
Arité
En mathématiques, l'arité d'une fonction, ou opération, est le nombre d'arguments ou d'opérandes qu'elle requiert. Une fonction ou un opérateur peut donc être décrits comme unaires, binaires, ternaires, etc. Des termes comme 7-aire ou n-aire sont aussi utilisés. L'addition de deux nombres, par exemple, est une fonction binaire, ou opération binaire. La fonction inverse, qui associe à un élément son inverse, est une fonction unaire. En calcul propositionnel, on considère aussi l'arité des connecteurs qui sont des fonctions des booléens dans un booléen.
Existential graph
An existential graph is a type of diagrammatic or visual notation for logical expressions, proposed by Charles Sanders Peirce, who wrote on graphical logic as early as 1882, and continued to develop the method until his death in 1914. Peirce proposed three systems of existential graphs: alpha, isomorphic to sentential logic and the two-element Boolean algebra; beta, isomorphic to first-order logic with identity, with all formulas closed; gamma, (nearly) isomorphic to normal modal logic. Alpha nests in beta and gamma.
Fondements des mathématiques
Les fondements des mathématiques sont les principes de la philosophie des mathématiques sur lesquels est établie cette science. Le logicisme a été prôné notamment par Gottlob Frege et Bertrand Russell. La mathématique pure présente deux caractéristiques : la généralité de son discours et la déductibilité du discours mathématique . En ce que le discours mathématique ne prétend qu’à une vérité formelle, il est possible de réduire les mathématiques à la logique, les lois logiques étant les lois du « vrai ».
Calcul des prédicats
En logique mathématique, le calcul des prédicats du premier ordre, ou calcul des relations, logique quantificationnelle, ou tout simplement calcul des prédicats, est un système formel utilisé pour raisonner et décrire des énoncés en mathématiques, informatique, intelligence artificielle, philosophie et linguistique. Il a été proposé par Gottlob Frege une formalisation du langage des mathématiques entre la fin du et le début du .

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.