Systèmes de questions-réponsesUn système de questions-réponses (question answering system en anglais, ou QA system) est un système informatique permettant de répondre automatiquement à des questions posées par des humains, lors d'un échange fait en langue naturelle (comme le français). La discipline liée appartient aux domaines du traitement automatique de la langue et de la recherche d'information. Elle se démarque de l'interrogation de moteurs de recherche en cela qu'elle vise non seulement à récupérer les documents pertinents d'une collection de textes, mais également à formuler une réponse très ciblée à la question posée.
OpenAIOpenAI (« AI » pour artificial intelligence, ou intelligence artificielle) est une entreprise spécialisée dans le raisonnement artificiel, à « but lucratif plafonné », dont le siège social est à San Francisco. Avant , elle est reconnue association à but non lucratif. L'objectif de cette société est de promouvoir et de développer un raisonnement artificiel à visage humain qui profitera à toute l'humanité.
Statistical machine translationStatistical machine translation (SMT) was a machine translation approach, that superseded the previous, rule-based approach because it required explicit description of each and every linguistic rule, which was costly, and which often did not generalize to other languages. Since 2003, the statistical approach itself has been gradually superseded by the deep learning-based neural network approach. The first ideas of statistical machine translation were introduced by Warren Weaver in 1949, including the ideas of applying Claude Shannon's information theory.
Attention (machine learning)Machine learning-based attention is a mechanism mimicking cognitive attention. It calculates "soft" weights for each word, more precisely for its embedding, in the context window. It can do it either in parallel (such as in transformers) or sequentially (such as recursive neural networks). "Soft" weights can change during each runtime, in contrast to "hard" weights, which are (pre-)trained and fine-tuned and remain frozen afterwards. Multiple attention heads are used in transformer-based large language models.
Text-to-image modelA text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description. Such models began to be developed in the mid-2010s, as a result of advances in deep neural networks. In 2022, the output of state of the art text-to-image models, such as OpenAI's DALL-E 2, Google Brain's , StabilityAI's Stable Diffusion, and Midjourney began to approach the quality of real photographs and human-drawn art.
Diffusion modelIn machine learning, diffusion models, also known as diffusion probabilistic models or score-based generative models, are a class of latent variable models. They are Markov chains trained using variational inference. The goal of diffusion models is to learn the latent structure of a dataset by modeling the way in which data points diffuse through the latent space. In computer vision, this means that a neural network is trained to denoise images blurred with Gaussian noise by learning to reverse the diffusion process.
ChatGPTChatGPT () est un prototype d'agent conversationnel utilisant l'intelligence artificielle, développé par OpenAI et spécialisé dans le dialogue. L'agent conversationnel de ChatGPT repose sur les technologies du traitement automatique des langues (NLP), des grands modèles de langage (LLM) et des chatbots. Il est issu du modèle de langage GPT d'OpenAI, et est affiné en continu grâce à l'utilisation de techniques d'apprentissage supervisé et d'apprentissage par renforcement.
Transformeur génératif pré-entraînédroite|vignette| Architecture du modèle GPT Le transformeur génératif pré-entraîné (ou GPT, de l’anglais generative pre-trained transformer) est une famille de modèles de langage généralement formée sur un grand corpus de données textuelles pour générer un texte de type humain. Il est construit en utilisant plusieurs blocs de l'architecture du transformeur. Ils peuvent être affinés pour diverses tâches de traitement du langage naturel telles que la génération de texte, la traduction de langue et la classification de texte.
Vanishing gradient problemIn machine learning, the vanishing gradient problem is encountered when training artificial neural networks with gradient-based learning methods and backpropagation. In such methods, during each iteration of training each of the neural networks weights receives an update proportional to the partial derivative of the error function with respect to the current weight. The problem is that in some cases, the gradient will be vanishingly small, effectively preventing the weight from changing its value.
Fonction softmaxvignette|Fonction softmax utilisée après un CNN (Réseau neuronal convolutif). Ici le vecteur (35.4, 38.1, -5.0) est transformée en (0.06, 0.94, 0.00). Dans ce contexte de classification d'images, le chien est reconnu. En mathématiques, la fonction softmax, aussi appelée fonction softargmax ou fonction exponentielle normalisée, est une généralisation de la fonction logistique. Elle convertit un vecteur de K nombres réels en une distribution de probabilités sur K choix.