Ordinal successeurEn théorie des ensembles, le « successeur » ou ordinal successeur, noté α + 1, d'un ordinal α, est l'ordinal qui suit immédiatement α, c'est-à-dire le plus petit ordinal strictement supérieur à α. Par rapport au successeur α + 1, l'ordinal α est parfois appelé ordinal prédécesseur ou simplement « prédécesseur » ou plus rarement « antécesseur ». C'est le plus grand ordinal strictement inférieur à α + 1. Dans la définition des ordinaux de von Neumann, l'ordinal successeur de α est α + 1 = α ∪ {α}.
Ordinal limiteEn mathématiques et plus précisément en théorie des ensembles, un ordinal limite est un nombre ordinal non nul qui n'est pas un ordinal successeur. D'après la définition ci-dessus, un ordinal α est limite si et seulement s'il satisfait l'une des propositions équivalentes suivantes : α ≠ 0 et ∀ β β+1 ≠ α ; 0 < α et ∀ β < α β+1 < α ; α ≠ 0 et ∀ β < α ∃ γ β < γ < α ; α est non nul et égal à la borne supérieure de tous les ordinaux qui lui sont strictement inférieurs (l'ensemble des ordinaux strictement inférieurs à un ordinal successeur β +1 possède un plus grand élément, l'ordinal β) ; en tant qu'ensemble d'ordinaux, α n'est pas vide et ne possède pas de plus grand élément ; α peut s'écrire sous la forme ω·γ avec γ > 0 ; α est un point d'accumulation de la classe des nombres ordinaux, munie de la topologie de l'ordre.
Dedekind-infinite setIn mathematics, a set A is Dedekind-infinite (named after the German mathematician Richard Dedekind) if some proper subset B of A is equinumerous to A. Explicitly, this means that there exists a bijective function from A onto some proper subset B of A. A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers.
Théorème de König (théorie des ensembles)In set theory, König's theorem states that if the axiom of choice holds, I is a set, and are cardinal numbers for every i in I, and for every i in I, then The sum here is the cardinality of the disjoint union of the sets mi, and the product is the cardinality of the Cartesian product. However, without the use of the axiom of choice, the sum and the product cannot be defined as cardinal numbers, and the meaning of the inequality sign would need to be clarified.
Théorème d'EastonEn théorie des ensembles, le théorème d'Easton est un résultat décrivant les nombres cardinaux possibles pour des ensembles de parties. (améliorant un résultat de Robert Solovay) montra par forcing que les seules contraintes sur les valeurs possibles de 2κ, où κ est un cardinal régulier, sont celles découlant du théorème de Cantor et du théorème de König : , et (où cf(α) est la cofinalité de α).
Continuum (set theory)In the mathematical field of set theory, the continuum means the real numbers, or the corresponding (infinite) cardinal number, denoted by . Georg Cantor proved that the cardinality is larger than the smallest infinity, namely, . He also proved that is equal to , the cardinality of the power set of the natural numbers. The cardinality of the continuum is the size of the set of real numbers. The continuum hypothesis is sometimes stated by saying that no cardinality lies between that of the continuum and that of the natural numbers, , or alternatively, that .