Aleph (nombre)vignette|Aleph-zéro, le plus petit aleph En théorie des ensembles, les alephs sont les cardinaux des ensembles infinis bien ordonnés. En quelque sorte, le cardinal d'un ensemble représente sa « taille », indépendamment de toute structure que puisse avoir cet ensemble (celle d'ordre en particulier dans le cas présent). Ils sont nommés ainsi d'après la lettre aleph, notée א, première lettre de l'alphabet hébreu, qui est utilisée pour les représenter.
Ensemble infiniEn mathématiques, plus précisément en théorie des ensembles, un ensemble infini est un ensemble qui n'est pas fini, c'est-à-dire qu'il n'y a aucun moyen de « compter » les éléments de cet ensemble à l'aide d'un ensemble borné d'entiers. Un ensemble en bijection avec un ensemble infini est donc infini. Tout ensemble contenant un ensemble dénombrable est infini. Dans la théorie de Zermelo (Z), l'axiome de l'infini permet de construire l'ensemble N des entiers naturels, qui est alors un ensemble infini.
Ensemble infini non dénombrableUn ensemble infini non dénombrable est un ensemble qui est « trop gros » pour être dénombrable. De manière précise, c'est un ensemble infini qui ne peut être mis en bijection avec les entiers naturels. En présence de l'axiome du choix, cela signifie que son cardinal est strictement supérieur au cardinal du dénombrable. On dit souvent simplement ensemble non dénombrable. L'ensemble des nombres réels en est un exemple. Avec l'hypothèse généralisée du continu, un ensemble des cardinalités infinies non dénombr
Ordre totalEn mathématiques, on appelle relation d'ordre total sur un ensemble E toute relation d'ordre ≤ pour laquelle deux éléments de E sont toujours comparables, c'est-à-dire que On dit alors que E est totalement ordonné par ≤. Une relation binaire ≤ sur un ensemble E est un ordre total si (pour tous éléments x, y et z de E) : x ≤ x (réflexivité) ; si x ≤ y et y ≤ x, alors x = y (antisymétrie) ; si x ≤ y et y ≤ z, alors x ≤ z (transitivité) ; x ≤ y ou y ≤ x (totalité). Les trois premières propriétés sont celles faisant de ≤ une relation d'ordre.
Ensemble bien ordonnéEn mathématiques, un ensemble ordonné (E, ≤) est bien ordonné et la relation ≤ est un bon ordre si la condition suivante est satisfaite : Toute partie non vide de E possède un plus petit élément. Formellement cela donne ∀X⊆E, X≠∅ ⇒ (∃u∈X, ∀v∈X u≤v). Si (E, ≤) est bien ordonné alors ≤ est nécessairement un ordre total, c'est-à-dire que deux éléments quelconques x et y de E sont toujours comparables. En effet, l'ensemble { x, y } possède un plus petit élément, donc on a x ≤ y ou y ≤ x.
BijectionEn mathématiques, une bijection ou application bijective (parfois appelée correspondances biunivoques) est une application qui est à la fois injective et surjective, autrement dit pour laquelle tout élément de son ensemble d'arrivée possède un et un seul antécédent. Une propriété des bijections est que s'il existe une bijection f d'un ensemble E dans un ensemble F alors il existe une bijection réciproque de F dans E qui à chaque élément de F associe son antécédent par f. Les deux ensembles sont dits en bijection, ou équipotents.
Récurrence transfinieEn mathématiques, on parle de récurrence transfinie ou de récursion transfinie pour deux principes reliés mais distincts. Les définitions par récursion transfinie — permettent de construire des objets infinis, et généralisent les définitions de suite par récurrence sur l'ensemble N des entiers naturels en considérant des familles indexées par un ordinal infini quelconque, au lieu de se borner au plus petit d'entre eux qu'est N, appelé ω en tant que nombre ordinal.
Beth (nombre)Dans la théorie des ensembles ZFC (avec axiome du choix), les nombres beth désignent une hiérarchie de nombres cardinaux indexée par les ordinaux, obtenue à partir du dénombrable en prenant le cardinal de l'ensemble des parties pour successeur, et la borne supérieure (ou réunion) pour passer à la limite. La notation de ces nombres utilise la deuxième lettre de l'alphabet hébreu, ou ב. En théorie des ensembles, les nombres cardinaux représentent la taille d'un ensemble.
CofinalitéConsidérons un ensemble A muni d'une relation binaire ≤. Un sous-ensemble B de A est dit cofinal si : pour tout élément a de A, il existe un élément b de B tel que a ≤ b ; ∀ a ∈ A, ∃ b ∈ B \ a ≤ b. La cofinalité de l'ensemble A est le cardinal du plus petit sous-ensemble cofinal de A. La cofinalité d'un ordinal limite est le plus petit ordinal tel qu'il existe une fonction non majorée. Cet ordinal est usuellement noté ou . Intuitivement, est le plus petit nombre de pas à faire pour arriver au bout de .
Paradoxe de CantorLe paradoxe de Cantor, ou paradoxe du plus grand cardinal, est un paradoxe de la théorie des ensembles dont l'argument a été découvert par Georg Cantor dans les années 1890. On le trouve dans sa lettre adressée à David Hilbert, datée de 1897. Il est appelé ainsi par Bertrand Russell dans ses Principles of Mathematics de 1903. Le paradoxe énonce que l'existence d'un plus grand cardinal conduit à une contradiction.