vignette|John H Conway en 2005
L’algorithme de jour du Jugement dernier, ou méthode des jours pivots, ou méthode du clavedi, ou enfin méthode de Conway (à distinguer de la méthode de Conway pour le calcul de la date de Pâques), Doomsday rule ou Doomsday algorithm, est une méthode de calcul du jour de la semaine à une date précise. Elle fournit un calendrier perpétuel pour le calendrier grégorien et pour le calendrier julien. Le principe de cette méthode peut être étendu à d'autres calendriers solaires dont les règles d'intercalation sont celles du calendrier julien ou du calendrier grégorien.
L'algorithme permettant le calcul mental fut élaboré à l'origine par John Horton Conway en 1973, qui tira son inspiration des travaux de Lewis Carroll sur un algorithme pour un calendrier perpétuel.
L'algorithme est suffisamment simple pour que tous ceux qui ont des connaissances arithmétiques puissent faire des calculs mentaux. John Conway pouvait généralement donner la réponse correcte en moins de deux secondes. Pour améliorer ses capacités, il avait installé sur son ordinateur un programme pour lui demander une date au hasard à chaque fois qu'il ouvrait une session.
L'algorithme a été amélioré par les mathématiciens Chamberlain Fong et Michael Walterss, afin de simplifier les calculs mentaux intermédiaires. Leur variante est dénommée "11 sur impair", pour "Odd + 11" en anglais.
Le site du calendrier milésien propose un exposé succinct de la méthode, et une traduction du mot doomsday utilisé dans ce contexte en clavedi.
John Conway prend en compte le fait que chaque année compte un certain nombre de dates faciles à se rappeler qui tombent toutes le même jour de la semaine. Par exemple, les 4/4, 6/6, 8/8, 10/10, 12/12, et le dernier jour de février (le « 0 mars ») d'une même année tombent tous le même jour de la semaine. Appelons jours pivots ou dates pivots ces dates, et jour clé ou clavedi ce jour de semaine caractéristique de l'année.
Les jours de semaine énumérés de dimanche à samedi sont caractérisés par leur rang, un chiffre de 0 à 6, le reste d'une division euclidienne d'un nombre entier par 7.