Modèle mixteUn modèle mixte est un modèle statistique qui comporte à la fois des effets fixes et des effets aléatoires. Ce type de modèle est utile dans une grande variété de domaines, tels que la physique, la biologie ou encore les sciences sociales. Les modèles mixtes sont particulièrement utiles dans les situations où des mesures répétées sont effectuées sur les mêmes variables (étude longitudinale). Ils sont souvent préférés à d'autres approches telle que rANOVA, dans la mesure où ils peuvent être utilisés dans le cas où le jeu de données présente des valeurs manquantes.
Statistical Methods for Research WorkersStatistical Methods for Research Workers is a classic book on statistics, written by the statistician R. A. Fisher. It is considered by some to be one of the 20th century's most influential books on statistical methods, together with his The Design of Experiments (1935). It was originally published in 1925, by Oliver & Boyd (Edinburgh); the final and posthumous 14th edition was published in 1970. According to Denis Conniffe: Ronald A.
Interaction (statistiques)Une interaction, en statistiques, peut survenir lorsqu'on considère la relation entre deux variables ou plus. Le terme "interaction" est donc utilisé pour décrire une situation dans laquelle l'influence d'une variable dépend de l'état de la seconde (ce qui est ce cas, lorsque les deux variables ne sont pas additives). Le plus souvent, les interactions apparaissent dans le contexte des analyses de régression. La présence d'interactions peut avoir des implications importantes pour l'interprétation des modèles statistiques.
Plan factorielthumb|right|Expériences statistiques : à gauche, un plan factoriel et, à droite, la surface de réponse obtenue par la méthode des surfaces de réponses En statistiques, un plan factoriel est une expérience qui consiste à choisir des valeurs pour chacun des facteurs en faisant varier simultanément tous les facteurs, de façon exhaustive ou non. Le nombre d'essais peut alors devenir très grand, i.e. on a une explosion combinatoire. Une telle expérience permet l'étude de l'effet de chaque variable sur le processus, ainsi que l'étude de la dépendance entre les variables.
ANOVA de FriedmanEn statistique, l'ANOVA de Friedman aussi appelée ANOVA de Friedman par rangs est un test statistique non-paramétrique développé par Milton Friedman. C'est une alternative non-paramétrique à l'analyse de variance à un facteur avec mesures répétées. Un exemple d'usage est si l'on considère n personnes chargées de noter k vins différents, est-ce que certains des k vins sont constamment classés plus haut ou plus bas que les autres ? Pour réaliser ce test il est nécessaire d'avoir des données arrangées de la même manière que pour une analyse de variance.
Analyse de covarianceL'analyse de la covariance (ANCOVA) est une méthode statistique visant à tester, par un modèle linéaire général, l'effet sur une variable dépendante continue d'une ou plusieurs variables indépendantes catégorielles, indépendamment de l'effet d'autres facteurs quantitatif continus, dits covariables. En d'autres termes, l'ANCOVA est une combinaison entre une ANOVA et une régression de telle sorte que l'ANCOVA permet de tester si certains facteurs ont un effet sur la variable résultat après avoir enlevé la variance due aux covariables.
Test de LeveneEn statistique, le Test de Levene est une statistique déductive utilisée pour évaluer l'égalité de variance pour une variable calculée pour deux groupes ou plus. Certaines procédures statistiques courantes supposent que les variances des populations à partir desquelles différents échantillons sont prélevés sont égales. Le test de Levene évalue cette hypothèse. Il teste l'hypothèse nulle que les variances de population sont égales (appelées « homogénéité de la variance » ou homoscédasticité).
Variable ordinalevignette|Exemple de représentation d’une variable ordinale : le niveau de certification par vignette Crit'Air. En statistique, une variable ordinale est une variable catégorielle dont les modalités sont totalement ordonnées, représentant chacune un niveau dans une gradation. Ces niveaux peuvent être codées par des lettres ou des chiffres sans que ceux-ci correspondent forcément à une grandeur numérique quantifiable, par exemple pour un degré de satisfaction, un grade militaire ou un numéro de version d’un logiciel.
Alternative hypothesisIn statistical hypothesis testing, the alternative hypothesis is one of the proposed proposition in the hypothesis test. In general the goal of hypothesis test is to demonstrate that in the given condition, there is sufficient evidence supporting the credibility of alternative hypothesis instead of the exclusive proposition in the test (null hypothesis). It is usually consistent with the research hypothesis because it is constructed from literature review, previous studies, etc.
Modèle linéairevignette|Données aléatoires sous forme de points, et leur régression linéaire. Un modèle linéaire multivarié est un modèle statistique dans lequel on cherche à exprimer une variable aléatoire à expliquer en fonction de variables explicatives X sous forme d'un opérateur linéaire. Le modèle linéaire est donné selon la formule : où Y est une matrice d'observations multivariées, X est une matrice de variables explicatives, B est une matrice de paramètres inconnus à estimer et U est une matrice contenant des erreurs ou du bruit.