Résumé
En mécanique, on désigne par pendule double un pendule à l'extrémité duquel on accroche un autre pendule. Son évolution est généralement chaotique. vignette Le pendule est constitué de deux tiges de longueur et , de masse nulle et deux masses et . L'énergie cinétique vaut : où est l'angle par rapport à la verticale et la vitesse du pendule . L'énergie potentielle vaut : ( étant l'altitude de la masse ), ou Le lagrangien vaut donc : soit En appliquant les équations de Lagrange, on obtient les équations du mouvement : (1) vignette|Illustration de la sensibilité aux conditions initiales avec trois pendules doubles aux conditions de départ très proches. (2) Ce système possède des solutions périodiques décomposables en deux modes, mais il est chaotique, c’est-à-dire qu'il possède aussi des solutions ni périodiques ni pseudo-périodiques, mais présentant en permanence un mouvement original, et qu'il est alors sensible aux conditions initiales. Supposons qu'autour de l'équilibre, . Pour des petites oscillations autour de la position d'équilibre, nous pouvons introduire les approximations de MacLaurin et . Les équations du mouvement peuvent alors être réduites au système : Le double pendule peut alors être analysé en termes de modes normaux, en remarquant que le système ci-dessus peut être réduit à la forme matricielle . Par exemple, pour et , ce système s'écrit : Les équations du mouvement peuvent également être trouvées en utilisant les complexes. Représentons le double pendule ci-dessus dans le plan complexe de Gauss, en posant que l’axe des réels a même sens et même direction que la gravitation. Les points m1 et m2 représentant les mobiles 1 et 2 correspondent aux affixes z1 et z2. En fait, seuls les angles vont varier en fonction du temps puisque la masse et la longueur sont des constantes. Il faut donc chercher une manière de représenter les fonctions et . Dès lors, puisque le module de z1 vaut l1, son argument , . Ensuite, observons que z2 est issu d’une translation de z1 par le complexe z0= , c’est-à-dire un complexe tel que son module vaut l2 et son argument .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.