Calabi conjectureIn the mathematical field of differential geometry, the Calabi conjecture was a conjecture about the existence of certain kinds of Riemannian metrics on certain complex manifolds, made by . It was proved by , who received the Fields Medal and Oswald Veblen Prize in part for his proof. His work, principally an analysis of an elliptic partial differential equation known as the complex Monge–Ampère equation, was an influential early result in the field of geometric analysis.
Vacuum solution (general relativity)In general relativity, a vacuum solution is a Lorentzian manifold whose Einstein tensor vanishes identically. According to the Einstein field equation, this means that the stress–energy tensor also vanishes identically, so that no matter or non-gravitational fields are present. These are distinct from the electrovacuum solutions, which take into account the electromagnetic field in addition to the gravitational field.
K-stabilityIn mathematics, and especially differential and algebraic geometry, K-stability is an algebro-geometric stability condition, for complex manifolds and complex algebraic varieties. The notion of K-stability was first introduced by Gang Tian and reformulated more algebraically later by Simon Donaldson. The definition was inspired by a comparison to geometric invariant theory (GIT) stability. In the special case of Fano varieties, K-stability precisely characterises the existence of Kähler–Einstein metrics.
K3 (géométrie)En géométrie différentielle ou algébrique, les surfaces K3 sont les variétés de Calabi-Yau de plus petite dimension différentes des tores. Ce sont des variétés complexes de dimension complexe 2 compactes et kählériennes. Les surfaces K3 possèdent en outre la propriété d'être les seules variétés de Calabi-Yau distincte du 4-tore T d'un point de vue topologique ou différentiel. Cependant, en tant que variété complexe, il y a un nombre infini de surfaces K3 non isomorphes. On peut notamment les distinguer par le biais du .