Concepts associés (16)
Eugenio Calabi
Eugenio Calabi, né le à Milan, est un mathématicien italo-américain et professeur émérite à l'université de Pennsylvanie, spécialiste de géométrie différentielle et des équations aux dérivées partielles. Eugenio Calabi étudie au MIT. Il soutient sa thèse en 1950 à l'université de Princeton sous la direction de Salomon Bochner. Il devient ensuite professeur à l'université du Minnesota. Son nom est associé à la sur les métriques kähleriennes, qui a été démontrée par Shing-Tung Yau et a mené à la notion de variété de Calabi-Yau.
Variété d'Einstein
Les 'variétés d'Einstein' sont un concept de géométrie différentielle et de physique théorique, étroitement relié à l'équation d'Einstein de la relativité générale. Il s'agit de variétés riemanniennes ou pseudo-riemanniennes dont la courbure de Ricci est proportionnelle à la métrique. Elles forment donc des solutions de l'équation d'Einstein dans le vide, avec une constante cosmologique non nécessairement nulle, mais sans se limiter au cadre de la géométrie lorentzienne utilisé en relativité générale, qui postule trois dimensions d'espace et une dimension de temps.
Shing-Tung Yau
Shing-Tung Yau ( ; ku1 sêng-tông), né le à Shantou, est un mathématicien chinois connu pour ses travaux en géométrie différentielle, et est à l'origine de la théorie des variétés de Calabi-Yau. Shing-Tung Yau naît dans la ville de Shantou, province de Guangdong (Chine) dans une famille de huit enfants. Son père, un professeur de philosophie, est mort alors qu'il avait quatorze ans. Il déménage à Hong Kong avec sa famille, où il étudie les mathématiques à l'université chinoise de Hong Kong de 1966 à 1969.
Courbure scalaire
En géométrie riemannienne, la courbure scalaire (ou scalaire de Ricci) est un des outils de mesure de la courbure d'une variété riemannienne. Cet invariant riemannien est une fonction qui affecte à chaque point m de la variété un simple nombre réel noté R(m) ou s(m), portant une information sur la courbure intrinsèque de la variété en ce point. Ainsi, on peut décrire le comportement infinitésimal des boules et des sphères centrées en m à l'aide de la courbure scalaire.
Tenseur de Weyl
En géométrie riemannienne, le tenseur de Weyl, nommé en l'honneur d'Hermann Weyl, représente la partie du tenseur de Riemann ne possédant pas de trace. En notant respectivement R_abcd, R_ab, R et g_ab le tenseur de Riemann, le tenseur de Ricci, la courbure scalaire et le tenseur métrique, le tenseur de Weyl C_abcd s'écrit où n est la dimension de l'espace considéré. En particulier, en relativité générale, où l'on considère presque exclusivement des espaces-temps de dimension 4, on a En relativité générale, le tenseur de Ricci est lié à la présence de matière ; en l'absence de matière, le tenseur de Ricci est nul.
Holonomie
En mathématiques, et plus précisément en géométrie différentielle, l'holonomie d'une connexion sur une variété différentielle est une mesure de la façon dont le transport parallèle le long de boucles fermées modifie les informations géométriques transportées. Cette modification est une conséquence de la courbure de la connexion (ou plus généralement de sa "forme"). Pour des connexions plates, l'holonomie associée est un type de monodromie, et c'est dans ce cas une notion uniquement globale.
Hyperkähler manifold
In differential geometry, a hyperkähler manifold is a Riemannian manifold endowed with three integrable almost complex structures that are Kähler with respect to the Riemannian metric and satisfy the quaternionic relations . In particular, it is a hypercomplex manifold. All hyperkähler manifolds are Ricci-flat and are thus Calabi–Yau manifolds. Hyperkähler manifolds were defined by Eugenio Calabi in 1979. Equivalently, a hyperkähler manifold is a Riemannian manifold of dimension whose holonomy group is contained in the compact symplectic group Sp(n).
Variété kählérienne
En mathématiques, une variété kählérienne ou variété de Kähler est une variété différentielle équipée d'une structure unitaire satisfaisant une condition d'intégrabilité. C'est en particulier une variété riemannienne, une variété symplectique et une variété complexe, ces trois structures étant mutuellement compatibles. Les variétés kählériennes sont un objet d'étude naturel en géométrie différentielle complexe. Elles doivent leur nom au mathématicien Erich Kähler. Plusieurs définitions équivalentes existent.
Tenseur de Ricci
Dans le cadre de la relativité générale, le champ de gravitation est interprété comme une déformation de l'espace-temps. Celle-ci est exprimée à l'aide du tenseur de Ricci. Le tenseur de Ricci est un champ tensoriel d'ordre 2, obtenu comme la trace du tenseur de courbure complet. On peut le considérer comme le laplacien du tenseur métrique riemannien dans le cas des variétés riemaniennes. Le tenseur de Ricci occupe une place importante notamment dans l'équation d'Einstein, équation principale de la relativité générale.
Tenseur d'Einstein
En géométrie différentielle, le tenseur d'Einstein est utilisé pour exprimer la courbure d'une variété pseudo-riemannienne. En relativité générale, il apparaît dans l'équation du champ d'Einstein, pour décrire comment le champ gravitationnel est affecté par la présence de matière. L'éponyme du tenseur d'Einstein est le physicien Albert Einstein (-) qui l'a construit au cours de l'élaboration de la relativité générale.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.