Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We show that the configuration spaces of a product of parallelizable manifolds may be recovered from those of the factors as the Boardman-Vogt tensor product of right modules over the operads of little cubes of the appropriate dimension. We also discuss an ...
We study the evolution equation where is the Dirichlet-Neumann operator of a decreasing family of Riemannian manifolds with boundary . We derive a lower bound for the solution of such an equation, and apply it to a quantitative density estimate for the res ...
We consider the stationary flow of an inviscid and incompressible fluid of constant density in the region D = (0, L) x R-2. We are concerned with flows that are periodic in the second and third variables and that have prescribed flux through each point of ...
In imitation learning, multivariate Gaussians are widely used to encode robot behaviors. Such approaches do not provide the ability to properly represent end-effector orientation, as the distance metric in the space of orientations is not Euclidean. In thi ...
Let M be a C-2-smooth Riemannian manifold with boundary and N a complete C-2-smooth Riemannian manifold. We show that each stationary p-harmonic mapping u: M -> N, whose image lies in a compact subset of N, is locally C-1,C-alpha for some alpha is an eleme ...
We propose an estimator for the mean of a random vector in Rd that can be computed in time O(n3.5 + n2d) for n i.i.d. samples and that has error bounds matching the sub-Gaussian case. The only assumptions we make about the data distribution are that it has ...
We consider the minimization of a function defined on a Riemannian manifold M accessible only through unbiased estimates of its gradients. We develop a geometric framework to transform a sequence of slowly converging iterates generated from stochastic gradi ...
Simultaneous and proportional control of a prosthetic hand and wrist is still a controversial issue, although giant steps have lately been made in this direction. In this paper, we study the application of a novel machine learning method to the problem, wi ...
We give a generalization of toric symplectic geometry to Poisson manifolds which are symplectic away from a collection of hypersurfaces forming a normal crossing configuration. We introduce the tropical momentum map, which takes values in a generalization ...
Bayesian optimization (BO) recently became popular in robotics to optimize control parameters and parametric policies in direct reinforcement learning due to its data efficiency and gradient-free approach. However, its performance may be seriously compromi ...